伊朗东部Birjand南部Bisheh地区含角化辉石闪长岩成因及锆石U-Pb定年

ملیحه نخعی, سیداحمد مظاهری, محمدحسن کریم پور, جی لنگ فارمر, چارلز استرن, محمد حسین زرین کوب, محمدرضا حیدریان شهری
{"title":"伊朗东部Birjand南部Bisheh地区含角化辉石闪长岩成因及锆石U-Pb定年","authors":"ملیحه نخعی, سیداحمد مظاهری, محمدحسن کریم پور, جی لنگ فارمر, چارلز استرن, محمد حسین زرین کوب, محمدرضا حیدریان شهری","doi":"10.22067/ECONG.V6I2.31772","DOIUrl":null,"url":null,"abstract":"Introduction \nThe study area is located 196 km south of Birjand in eastern border of the Lut block )Berberian and King, 1981) in eastern Iran between 59°05′35\" and 59°09′12\" E longitude and 31°42′29\" and 31°44′13\" N latitude. The magmatic activity in the Lut block began in the middle Jurassic such as Kalateh Ahani, Shah Kuh and Surkh Kuh granitoids that are among the oldest rocks exposed within the Lut block (Esmaeily et al., 2005; Tarkian et al., 1983; Moradi Noghondar et al., 2011-2012). Eastern Iran, and particularly the Lut block, has great potential for different types of mineralization as skarnification in Bisheh area which has been studied in this paper. The goal of this study is to highlight the geochronology, geochemistry of major and trace elements, Rb-Sr, Sm-Nd isotopes for skarnified pyroxene-bearing diorites. \n \nMaterials and methods \nMajor element compositions of thirteen samples were determined by wavelength-dispersive X-ray fluorescence (XRF) spectrometry, using fused discs and the Phillips PW 1410 XRF spectrometer at Ferdowsi University, Mashhad, Iran. These samples were analysed for trace elements using inductively coupled plasma-mass spectrometry (ICP-MS) in the Acme Analytical Laboratories, Vancouver, British Columbia, Canada. \nZircon grains were separated from pyroxene diorite porphyrys using heavy liquid and magnetic techniques at the Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan. Zircon U-Pb dating was performed by laser ablation-inductively-coupled plasma-mass spectrometry (LA-ICP-MS), using an Agilent 7500 s machine and a New Wave UP213 laser ablation system, equipped at the Dr Shen-Su Sun memorial laboratory in the Department of Geosciences, National Taiwan University, Taiwan. \nStrontium and Nd isotopic analyses were performed on a six-collector Finnigan MAT 261 thermal-ionization mass spectrometer at the University of Colorado, Boulder, Colorado, United States. 87Sr/86Sr ratios were determined using four-collector static mode measurements. Several measurements of SRM-987 during the study period yielded a mean of 87Sr/86Sr = 0.71032 ± 2 (error is the 2σ mean). Measured 87Sr/86Sr ratios were corrected to SRM-987 = 0.71028. Measured 143Nd/144Nd was normalized to 146Nd/144Nd = 0.7219. Analyses were conducted as dynamic mode, three-collector measurements. Several measurements of the La Jolla Nd standard during the study period yielded a mean of 143Nd/144Nd = 0.511838 ± 8 (error is the 2σ mean). \n \nResults \nIn the Bisheh area that is located east of Lut block, pyroxene-bearing dioritic rocks are high-K calk-alkaline and meta-aluminous. Primitive mantle-normalized trace element spider diagrams display strong enrichment in LILE, such as Rb, Ba, and Cs, and depletion in some HFSE, e.g., Nb, P, Ti, Y and Yb. Chondrite-normalized REE diagrams show (La/Yb)N ratios ranging from 7.75 to 8.63 and small negative Eu anomalies. These features along with high Th/Yb and Ta/Yb ratios show that magmatism is related to continental margin subduction. Obvious depletion of Nb and Ti, relatively high values of Mg#, initial 87Sr/86Sr (0.70606) and 143Nd/144Nd (0.512424) ratios as well as eNd (-3.05) suggest that the magma originated from an enriched mantle with crustal contamination. High values of Rb, Th and K and low amount of P and Ti support the magma contamination in upper crust during magma evolution. Zircon U-Pb age dating for a porphyritic pyroxene diorite sample yield an age of 44.07±0.69 Ma indicating middle Eocene (Lutetian). \n \nDiscussion \nThe isotopic value for the Bisheh dioritic porphyry can be considered as indicative of lithospheric mantle melting. The trace element characteristics of these rocks can be used to characterize their mantle source. The MORB normalized trace element pattern (Pearce, 1983) of all samples shows a negative anomaly for Nb, Ti and Ta. The negative anomaly of these elements can be explained by the presence of a residual TNT phase (Ti-Nb-Ta, e.g., rutile, ilmenite and perovskite) during the melting of the source (Reagan and Gill, 1989). This pattern followed that of calc-alkaline magmas derived from a sub-arc mantle, with scarce or no garnet in the source. Furthermore, Bisheh subvolcanic bodies were enriched in Rb, Ba and Th, indicating that they had experienced interaction with the continental crust (Kuscu et al., 2002). The chondrite-normalized rare earth element pattern of the studied rocks shows a high ratio of light rare earth elements (LREE) to heavy rare earth elements (HREE). All the samples have been plotted in the VAG field. \nThe dioritic rocks from the Bisheh have relatively high Mg# (0.4-0.56), which is consistent with derivation from mantle melts contaminated by continental crust (Rapp and Watson, 1995). The initial 87Sr/86Sr of Bisheh pyroxene diorite porphyry was 0.70606 and the (143Nd/144Nd)i isotope compositions and eNd value of these rocks was 0.512424 and -3.05, respectively. These values show that the magma originated from an enriched mantle with crustal contamination. \n \nAcknowledgements \nThe authors are grateful to Professor Sun-Lin Chung from the Department of Geosciences, National Taiwan University, for supporting the researchers in the use of U-Th-Pb zircon age dating. \n \nReferences \nBerberian, M. and King, G.C., 1981. Towards a palaeogeography and tectonics evolution of Iran. Canadian Journal of Earth Science, 18(2): 210–265. \nEsmaeily, D., Nedelec, A., Valizadeh, M.V., Moore, F. and Cotton, J., 2005. Petrology of the Jurassic Shah-Kuh granite (eastern Iran), with reference to tin mineralization. Journal of Asian Earth Sciences, 25(6): 961-980. \nTarkian, M., Lotfi, M. and Baumann, A., 1983. Tectonic, magmatism and the formation of mineral deposits in the central Lut, east Iran. Geological Survey of Iran, geodynamic project (geotraverse) in Iran, Tehran, Report 51, 519 pp. \nMoradi Noghondar, M., Karimpour, M.H., Farmer, G.L. and Stern, C.R., 2011-2012. Sr-Nd isotopic characteristic, U-Pb zircon geochronology, and petrogenesis of Najmabad Granodiorite batholith, Eastern Iran. Journal of Economic Geology, 3(2): 127-145. (in Persian) \nPearce, J.A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: C.J. Hawkesworth and M. J. Norry (Editors), Continental basalts and mantle xenoliths. Shiva Publications, Nantwich, UK, pp. 230-249. \nReagan, M. K. and Gill, J. B., 1989. Coexisting calcalkaline and high niobium basalts from Turrialba volcano, Costa Rica: implication for residual titanates in arc magma source. Journal of Geophysical Research, 94(B4): 4619-4633. \nKuscu, I., Kuscu, G.G., Meinert, L.D. and Floyd, P.A., 2002. Tectonic setting and petrogenesis of the Celebi granitoid, (Kirikkale-Turkey) and comparison with world skarn granitoids. Journal of Geochemical Exploration, 76(3): 175–194. \nRapp, R.P. and Watson, E.B., 1995. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust–mantle recycling. Journal of Petrology, 36(4): 891–931.","PeriodicalId":37178,"journal":{"name":"Journal of Economic Geology","volume":"6 1","pages":"393-409"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Petrogenesis and zircon U-Pb dating of skarnified pyroxene-bearing dioritic rocks in Bisheh area, south of Birjand, eastern Iran\",\"authors\":\"ملیحه نخعی, سیداحمد مظاهری, محمدحسن کریم پور, جی لنگ فارمر, چارلز استرن, محمد حسین زرین کوب, محمدرضا حیدریان شهری\",\"doi\":\"10.22067/ECONG.V6I2.31772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction \\nThe study area is located 196 km south of Birjand in eastern border of the Lut block )Berberian and King, 1981) in eastern Iran between 59°05′35\\\" and 59°09′12\\\" E longitude and 31°42′29\\\" and 31°44′13\\\" N latitude. The magmatic activity in the Lut block began in the middle Jurassic such as Kalateh Ahani, Shah Kuh and Surkh Kuh granitoids that are among the oldest rocks exposed within the Lut block (Esmaeily et al., 2005; Tarkian et al., 1983; Moradi Noghondar et al., 2011-2012). Eastern Iran, and particularly the Lut block, has great potential for different types of mineralization as skarnification in Bisheh area which has been studied in this paper. The goal of this study is to highlight the geochronology, geochemistry of major and trace elements, Rb-Sr, Sm-Nd isotopes for skarnified pyroxene-bearing diorites. \\n \\nMaterials and methods \\nMajor element compositions of thirteen samples were determined by wavelength-dispersive X-ray fluorescence (XRF) spectrometry, using fused discs and the Phillips PW 1410 XRF spectrometer at Ferdowsi University, Mashhad, Iran. These samples were analysed for trace elements using inductively coupled plasma-mass spectrometry (ICP-MS) in the Acme Analytical Laboratories, Vancouver, British Columbia, Canada. \\nZircon grains were separated from pyroxene diorite porphyrys using heavy liquid and magnetic techniques at the Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan. Zircon U-Pb dating was performed by laser ablation-inductively-coupled plasma-mass spectrometry (LA-ICP-MS), using an Agilent 7500 s machine and a New Wave UP213 laser ablation system, equipped at the Dr Shen-Su Sun memorial laboratory in the Department of Geosciences, National Taiwan University, Taiwan. \\nStrontium and Nd isotopic analyses were performed on a six-collector Finnigan MAT 261 thermal-ionization mass spectrometer at the University of Colorado, Boulder, Colorado, United States. 87Sr/86Sr ratios were determined using four-collector static mode measurements. Several measurements of SRM-987 during the study period yielded a mean of 87Sr/86Sr = 0.71032 ± 2 (error is the 2σ mean). Measured 87Sr/86Sr ratios were corrected to SRM-987 = 0.71028. Measured 143Nd/144Nd was normalized to 146Nd/144Nd = 0.7219. Analyses were conducted as dynamic mode, three-collector measurements. Several measurements of the La Jolla Nd standard during the study period yielded a mean of 143Nd/144Nd = 0.511838 ± 8 (error is the 2σ mean). \\n \\nResults \\nIn the Bisheh area that is located east of Lut block, pyroxene-bearing dioritic rocks are high-K calk-alkaline and meta-aluminous. Primitive mantle-normalized trace element spider diagrams display strong enrichment in LILE, such as Rb, Ba, and Cs, and depletion in some HFSE, e.g., Nb, P, Ti, Y and Yb. Chondrite-normalized REE diagrams show (La/Yb)N ratios ranging from 7.75 to 8.63 and small negative Eu anomalies. These features along with high Th/Yb and Ta/Yb ratios show that magmatism is related to continental margin subduction. Obvious depletion of Nb and Ti, relatively high values of Mg#, initial 87Sr/86Sr (0.70606) and 143Nd/144Nd (0.512424) ratios as well as eNd (-3.05) suggest that the magma originated from an enriched mantle with crustal contamination. High values of Rb, Th and K and low amount of P and Ti support the magma contamination in upper crust during magma evolution. Zircon U-Pb age dating for a porphyritic pyroxene diorite sample yield an age of 44.07±0.69 Ma indicating middle Eocene (Lutetian). \\n \\nDiscussion \\nThe isotopic value for the Bisheh dioritic porphyry can be considered as indicative of lithospheric mantle melting. The trace element characteristics of these rocks can be used to characterize their mantle source. The MORB normalized trace element pattern (Pearce, 1983) of all samples shows a negative anomaly for Nb, Ti and Ta. The negative anomaly of these elements can be explained by the presence of a residual TNT phase (Ti-Nb-Ta, e.g., rutile, ilmenite and perovskite) during the melting of the source (Reagan and Gill, 1989). This pattern followed that of calc-alkaline magmas derived from a sub-arc mantle, with scarce or no garnet in the source. Furthermore, Bisheh subvolcanic bodies were enriched in Rb, Ba and Th, indicating that they had experienced interaction with the continental crust (Kuscu et al., 2002). The chondrite-normalized rare earth element pattern of the studied rocks shows a high ratio of light rare earth elements (LREE) to heavy rare earth elements (HREE). All the samples have been plotted in the VAG field. \\nThe dioritic rocks from the Bisheh have relatively high Mg# (0.4-0.56), which is consistent with derivation from mantle melts contaminated by continental crust (Rapp and Watson, 1995). The initial 87Sr/86Sr of Bisheh pyroxene diorite porphyry was 0.70606 and the (143Nd/144Nd)i isotope compositions and eNd value of these rocks was 0.512424 and -3.05, respectively. These values show that the magma originated from an enriched mantle with crustal contamination. \\n \\nAcknowledgements \\nThe authors are grateful to Professor Sun-Lin Chung from the Department of Geosciences, National Taiwan University, for supporting the researchers in the use of U-Th-Pb zircon age dating. \\n \\nReferences \\nBerberian, M. and King, G.C., 1981. Towards a palaeogeography and tectonics evolution of Iran. Canadian Journal of Earth Science, 18(2): 210–265. \\nEsmaeily, D., Nedelec, A., Valizadeh, M.V., Moore, F. and Cotton, J., 2005. Petrology of the Jurassic Shah-Kuh granite (eastern Iran), with reference to tin mineralization. Journal of Asian Earth Sciences, 25(6): 961-980. \\nTarkian, M., Lotfi, M. and Baumann, A., 1983. Tectonic, magmatism and the formation of mineral deposits in the central Lut, east Iran. Geological Survey of Iran, geodynamic project (geotraverse) in Iran, Tehran, Report 51, 519 pp. \\nMoradi Noghondar, M., Karimpour, M.H., Farmer, G.L. and Stern, C.R., 2011-2012. Sr-Nd isotopic characteristic, U-Pb zircon geochronology, and petrogenesis of Najmabad Granodiorite batholith, Eastern Iran. Journal of Economic Geology, 3(2): 127-145. (in Persian) \\nPearce, J.A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: C.J. Hawkesworth and M. J. Norry (Editors), Continental basalts and mantle xenoliths. Shiva Publications, Nantwich, UK, pp. 230-249. \\nReagan, M. K. and Gill, J. B., 1989. Coexisting calcalkaline and high niobium basalts from Turrialba volcano, Costa Rica: implication for residual titanates in arc magma source. Journal of Geophysical Research, 94(B4): 4619-4633. \\nKuscu, I., Kuscu, G.G., Meinert, L.D. and Floyd, P.A., 2002. Tectonic setting and petrogenesis of the Celebi granitoid, (Kirikkale-Turkey) and comparison with world skarn granitoids. Journal of Geochemical Exploration, 76(3): 175–194. \\nRapp, R.P. and Watson, E.B., 1995. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust–mantle recycling. Journal of Petrology, 36(4): 891–931.\",\"PeriodicalId\":37178,\"journal\":{\"name\":\"Journal of Economic Geology\",\"volume\":\"6 1\",\"pages\":\"393-409\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Economic Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22067/ECONG.V6I2.31772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22067/ECONG.V6I2.31772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究区位于伊朗东部,位于东经59°05′35”和59°09′12”之间,北纬31°42′29”和31°44′13”之间,距离Birjand南部196公里,位于Lut区块东部边界(Berberian and King, 1981)。卢特地块的岩浆活动始于中侏罗世,如Kalateh Ahani、Shah Kuh和Surkh Kuh花岗岩类,它们是卢特地块内暴露的最古老的岩石(esmaily等人,2005;Tarkian et al., 1983;Moradi Noghondar et al., 2011-2012)。伊朗东部,特别是Lut地块,在Bisheh地区具有不同类型矿化的巨大潜力,这是本文研究的。本研究的目的是强调矽晶化辉石闪长岩的年代学、主要元素和微量元素的地球化学、Rb-Sr、Sm-Nd同位素。材料和方法利用伊朗马什哈德Ferdowsi大学的philips PW 1410 XRF光谱仪,采用波长色散x射线荧光(XRF)光谱法测定了13个样品的主要元素组成。这些样品采用加拿大不列颠哥伦比亚省温哥华Acme分析实验室电感耦合等离子体质谱法(ICP-MS)进行微量元素分析。在台北市中央研究院地球科学研究所,利用重液磁技术从辉石闪长斑岩中分离出锆石颗粒。锆石U-Pb测年采用激光烧蚀-电感耦合等离子体质谱法(LA-ICP-MS)进行,仪器为安捷7500 s激光烧蚀仪和新波UP213激光烧蚀系统,设备为国立台湾大学地球科学系孙深苏博士纪念实验室。锶和钕的同位素分析是在美国科罗拉多大学的六收集器Finnigan MAT 261热电离质谱仪上进行的,87Sr/86Sr比值是通过四收集器静态模式测量确定的。在研究期间,SRM-987的几次测量结果的平均值为87Sr/86Sr = 0.71032±2(误差为2σ平均值)。测量的87Sr/86Sr比值修正为SRM-987 = 0.71028。测量到的143Nd/144Nd归一化为146Nd/144Nd = 0.7219。分析采用动态模式,三集热器测量。在研究期间,拉霍亚钕标准的几次测量结果的平均值为143Nd/144Nd = 0.511838±8(误差为2σ平均值)。结果在Lut地块以东的Bisheh地区,含辉石质闪长岩为高钾钙碱性、偏铝质。原始地幔归一化的微量元素蜘蛛图显示,LILE中Rb、Ba、Cs等元素富集,而HFSE中Nb、P、Ti、Y、Yb等元素富集。球粒陨石归一化稀土图显示(La/Yb)N比值在7.75 ~ 8.63之间,Eu有少量负异常。这些特征以及高Th/Yb和Ta/Yb比值表明岩浆活动与大陆边缘俯冲有关。Nb、Ti明显衰竭,Mg#值较高,初始87Sr/86Sr(0.70606)和143Nd/144Nd(0.512424)比值和eNd(-3.05)表明岩浆起源于地壳污染的富集地幔。在岩浆演化过程中,高Rb、Th、K值和低P、Ti值支持上地壳的岩浆污染。锆石U-Pb年龄为44.07±0.69 Ma,为中始新世(Lutetian)。比什闪长斑岩的同位素值可以认为是岩石圈地幔熔融的指示。这些岩石的微量元素特征可以用来表征它们的地幔来源。所有样品的MORB标准化微量元素模式(Pearce, 1983)显示Nb、Ti和Ta呈负异常。这些元素的负异常可以通过在源熔化过程中残余的TNT相(Ti-Nb-Ta,例如金红石、钛铁矿和钙钛矿)的存在来解释(Reagan和Gill, 1989)。这一模式遵循了源自亚弧地幔的钙碱性岩浆的模式,其来源中石榴石很少或没有石榴石。此外,Bisheh次火山岩体富含Rb、Ba和Th,表明它们经历了与大陆地壳的相互作用(Kuscu et al., 2002)。研究岩石的球粒陨石归一化稀土元素模式显示,轻稀土元素(LREE)与重稀土元素(HREE)的比例较高。所有的样本都已绘制在VAG字段中。比什闪长岩具有较高的Mg#(0.4 ~ 0.56),这与受大陆地壳污染的地幔熔体衍生相一致(Rapp和Watson, 1995)。比什辉石闪长斑岩的初始87Sr/86Sr为0.70606,(143Nd/144Nd)i同位素组成和eNd值分别为0.512424和-3.05。 本研究区位于伊朗东部,位于东经59°05′35”和59°09′12”之间,北纬31°42′29”和31°44′13”之间,距离Birjand南部196公里,位于Lut区块东部边界(Berberian and King, 1981)。卢特地块的岩浆活动始于中侏罗世,如Kalateh Ahani、Shah Kuh和Surkh Kuh花岗岩类,它们是卢特地块内暴露的最古老的岩石(esmaily等人,2005;Tarkian et al., 1983;Moradi Noghondar et al., 2011-2012)。伊朗东部,特别是Lut地块,在Bisheh地区具有不同类型矿化的巨大潜力,这是本文研究的。本研究的目的是强调矽晶化辉石闪长岩的年代学、主要元素和微量元素的地球化学、Rb-Sr、Sm-Nd同位素。材料和方法利用伊朗马什哈德Ferdowsi大学的philips PW 1410 XRF光谱仪,采用波长色散x射线荧光(XRF)光谱法测定了13个样品的主要元素组成。这些样品采用加拿大不列颠哥伦比亚省温哥华Acme分析实验室电感耦合等离子体质谱法(ICP-MS)进行微量元素分析。在台北市中央研究院地球科学研究所,利用重液磁技术从辉石闪长斑岩中分离出锆石颗粒。锆石U-Pb测年采用激光烧蚀-电感耦合等离子体质谱法(LA-ICP-MS)进行,仪器为安捷7500 s激光烧蚀仪和新波UP213激光烧蚀系统,设备为国立台湾大学地球科学系孙深苏博士纪念实验室。锶和钕的同位素分析是在美国科罗拉多大学的六收集器Finnigan MAT 261热电离质谱仪上进行的,87Sr/86Sr比值是通过四收集器静态模式测量确定的。在研究期间,SRM-987的几次测量结果的平均值为87Sr/86Sr = 0.71032±2(误差为2σ平均值)。测量的87Sr/86Sr比值修正为SRM-987 = 0.71028。测量到的143Nd/144Nd归一化为146Nd/144Nd = 0.7219。分析采用动态模式,三集热器测量。在研究期间,拉霍亚钕标准的几次测量结果的平均值为143Nd/144Nd = 0.511838±8(误差为2σ平均值)。结果在Lut地块以东的Bisheh地区,含辉石质闪长岩为高钾钙碱性、偏铝质。原始地幔归一化的微量元素蜘蛛图显示,LILE中Rb、Ba、Cs等元素富集,而HFSE中Nb、P、Ti、Y、Yb等元素富集。球粒陨石归一化稀土图显示(La/Yb)N比值在7.75 ~ 8.63之间,Eu有少量负异常。这些特征以及高Th/Yb和Ta/Yb比值表明岩浆活动与大陆边缘俯冲有关。Nb、Ti明显衰竭,Mg#值较高,初始87Sr/86Sr(0.70606)和143Nd/144Nd(0.512424)比值和eNd(-3.05)表明岩浆起源于地壳污染的富集地幔。在岩浆演化过程中,高Rb、Th、K值和低P、Ti值支持上地壳的岩浆污染。锆石U-Pb年龄为44.07±0.69 Ma,为中始新世(Lutetian)。比什闪长斑岩的同位素值可以认为是岩石圈地幔熔融的指示。这些岩石的微量元素特征可以用来表征它们的地幔来源。所有样品的MORB标准化微量元素模式(Pearce, 1983)显示Nb、Ti和Ta呈负异常。这些元素的负异常可以通过在源熔化过程中残余的TNT相(Ti-Nb-Ta,例如金红石、钛铁矿和钙钛矿)的存在来解释(Reagan和Gill, 1989)。这一模式遵循了源自亚弧地幔的钙碱性岩浆的模式,其来源中石榴石很少或没有石榴石。此外,Bisheh次火山岩体富含Rb、Ba和Th,表明它们经历了与大陆地壳的相互作用(Kuscu et al., 2002)。研究岩石的球粒陨石归一化稀土元素模式显示,轻稀土元素(LREE)与重稀土元素(HREE)的比例较高。所有的样本都已绘制在VAG字段中。比什闪长岩具有较高的Mg#(0.4 ~ 0.56),这与受大陆地壳污染的地幔熔体衍生相一致(Rapp和Watson, 1995)。比什辉石闪长斑岩的初始87Sr/86Sr为0.70606,(143Nd/144Nd)i同位素组成和eNd值分别为0.512424和-3.05。 这些数值表明岩浆起源于受地壳污染的富集地幔。作者感谢国立台湾大学地球科学系钟孙林教授对研究人员使用U-Th-Pb锆石年龄定年的支持。参考文献Berberian, M.和King, g.c., 1981。伊朗古地理与构造演化研究。地球科学学报,18(2):210-265。esmaely, D, Nedelec, A, Valizadeh, m.v., Moore, F.和Cotton, J., 2005。伊朗东部侏罗纪沙库花岗岩的岩石学,与锡矿化有关。地球科学进展,25(6):961-980。Tarkian, M., Lotfi, M.和Baumann, A., 1983。伊朗东部卢特中部构造、岩浆作用与矿床形成。Moradi Noghondar, M., Karimpour, M.H, Farmer, G.L.和Stern, C.R, 2011-2012。伊朗东部Najmabad花岗闪长岩基Sr-Nd同位素特征、U-Pb锆石年代学及岩石成因经济地质学报,3(2):127-145。(波斯文)皮尔斯,j.a., 1983。次大陆岩石圈在活动大陆边缘岩浆成因中的作用。见:C.J. Hawkesworth和m.j. Norry(编者),大陆玄武岩和地幔捕虏体。Shiva出版社,Nantwich,英国,pp. 230-249。里根,M. K.和吉尔,J. B. 1989。哥斯达黎加Turrialba火山钙碱性和高铌共存玄武岩:弧岩浆源中残余钛酸盐的意义。地球物理学报,21(4):444 - 444。Kuscu, I., Kuscu, g.g., Meinert, L.D.和Floyd, p.a., 2002。土耳其西里比花岗岩的构造背景、成因及与世界矽卡岩花岗岩的比较。地球化学勘探,76(3):175-194。拉普,R.P.和沃森,e.b., 1995。8 - 32kbar变质玄武岩脱水熔融:对大陆生长和壳幔再循环的启示。岩石学报,36(4):891-931。 这些数值表明岩浆起源于受地壳污染的富集地幔。作者感谢国立台湾大学地球科学系钟孙林教授对研究人员使用U-Th-Pb锆石年龄定年的支持。参考文献Berberian, M.和King, g.c., 1981。伊朗古地理与构造演化研究。地球科学学报,18(2):210-265。esmaely, D, Nedelec, A, Valizadeh, m.v., Moore, F.和Cotton, J., 2005。伊朗东部侏罗纪沙库花岗岩的岩石学,与锡矿化有关。地球科学进展,25(6):961-980。Tarkian, M., Lotfi, M.和Baumann, A., 1983。伊朗东部卢特中部构造、岩浆作用与矿床形成。Moradi Noghondar, M., Karimpour, M.H, Farmer, G.L.和Stern, C.R, 2011-2012。伊朗东部Najmabad花岗闪长岩基Sr-Nd同位素特征、U-Pb锆石年代学及岩石成因经济地质学报,3(2):127-145。(波斯文)皮尔斯,j.a., 1983。次大陆岩石圈在活动大陆边缘岩浆成因中的作用。见:C.J. Hawkesworth和m.j. Norry(编者),大陆玄武岩和地幔捕虏体。Shiva出版社,Nantwich,英国,pp. 230-249。里根,M. K.和吉尔,J. B. 1989。哥斯达黎加Turrialba火山钙碱性和高铌共存玄武岩:弧岩浆源中残余钛酸盐的意义。地球物理学报,21(4):444 - 444。Kuscu, I., Kuscu, g.g., Meinert, L.D.和Floyd, p.a., 2002。土耳其西里比花岗岩的构造背景、成因及与世界矽卡岩花岗岩的比较。地球化学勘探,76(3):175-194。拉普,R.P.和沃森,e.b., 1995。8 - 32kbar变质玄武岩脱水熔融:对大陆生长和壳幔再循环的启示。岩石学报,36(4):891-931。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Petrogenesis and zircon U-Pb dating of skarnified pyroxene-bearing dioritic rocks in Bisheh area, south of Birjand, eastern Iran
Introduction The study area is located 196 km south of Birjand in eastern border of the Lut block )Berberian and King, 1981) in eastern Iran between 59°05′35" and 59°09′12" E longitude and 31°42′29" and 31°44′13" N latitude. The magmatic activity in the Lut block began in the middle Jurassic such as Kalateh Ahani, Shah Kuh and Surkh Kuh granitoids that are among the oldest rocks exposed within the Lut block (Esmaeily et al., 2005; Tarkian et al., 1983; Moradi Noghondar et al., 2011-2012). Eastern Iran, and particularly the Lut block, has great potential for different types of mineralization as skarnification in Bisheh area which has been studied in this paper. The goal of this study is to highlight the geochronology, geochemistry of major and trace elements, Rb-Sr, Sm-Nd isotopes for skarnified pyroxene-bearing diorites. Materials and methods Major element compositions of thirteen samples were determined by wavelength-dispersive X-ray fluorescence (XRF) spectrometry, using fused discs and the Phillips PW 1410 XRF spectrometer at Ferdowsi University, Mashhad, Iran. These samples were analysed for trace elements using inductively coupled plasma-mass spectrometry (ICP-MS) in the Acme Analytical Laboratories, Vancouver, British Columbia, Canada. Zircon grains were separated from pyroxene diorite porphyrys using heavy liquid and magnetic techniques at the Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan. Zircon U-Pb dating was performed by laser ablation-inductively-coupled plasma-mass spectrometry (LA-ICP-MS), using an Agilent 7500 s machine and a New Wave UP213 laser ablation system, equipped at the Dr Shen-Su Sun memorial laboratory in the Department of Geosciences, National Taiwan University, Taiwan. Strontium and Nd isotopic analyses were performed on a six-collector Finnigan MAT 261 thermal-ionization mass spectrometer at the University of Colorado, Boulder, Colorado, United States. 87Sr/86Sr ratios were determined using four-collector static mode measurements. Several measurements of SRM-987 during the study period yielded a mean of 87Sr/86Sr = 0.71032 ± 2 (error is the 2σ mean). Measured 87Sr/86Sr ratios were corrected to SRM-987 = 0.71028. Measured 143Nd/144Nd was normalized to 146Nd/144Nd = 0.7219. Analyses were conducted as dynamic mode, three-collector measurements. Several measurements of the La Jolla Nd standard during the study period yielded a mean of 143Nd/144Nd = 0.511838 ± 8 (error is the 2σ mean). Results In the Bisheh area that is located east of Lut block, pyroxene-bearing dioritic rocks are high-K calk-alkaline and meta-aluminous. Primitive mantle-normalized trace element spider diagrams display strong enrichment in LILE, such as Rb, Ba, and Cs, and depletion in some HFSE, e.g., Nb, P, Ti, Y and Yb. Chondrite-normalized REE diagrams show (La/Yb)N ratios ranging from 7.75 to 8.63 and small negative Eu anomalies. These features along with high Th/Yb and Ta/Yb ratios show that magmatism is related to continental margin subduction. Obvious depletion of Nb and Ti, relatively high values of Mg#, initial 87Sr/86Sr (0.70606) and 143Nd/144Nd (0.512424) ratios as well as eNd (-3.05) suggest that the magma originated from an enriched mantle with crustal contamination. High values of Rb, Th and K and low amount of P and Ti support the magma contamination in upper crust during magma evolution. Zircon U-Pb age dating for a porphyritic pyroxene diorite sample yield an age of 44.07±0.69 Ma indicating middle Eocene (Lutetian). Discussion The isotopic value for the Bisheh dioritic porphyry can be considered as indicative of lithospheric mantle melting. The trace element characteristics of these rocks can be used to characterize their mantle source. The MORB normalized trace element pattern (Pearce, 1983) of all samples shows a negative anomaly for Nb, Ti and Ta. The negative anomaly of these elements can be explained by the presence of a residual TNT phase (Ti-Nb-Ta, e.g., rutile, ilmenite and perovskite) during the melting of the source (Reagan and Gill, 1989). This pattern followed that of calc-alkaline magmas derived from a sub-arc mantle, with scarce or no garnet in the source. Furthermore, Bisheh subvolcanic bodies were enriched in Rb, Ba and Th, indicating that they had experienced interaction with the continental crust (Kuscu et al., 2002). The chondrite-normalized rare earth element pattern of the studied rocks shows a high ratio of light rare earth elements (LREE) to heavy rare earth elements (HREE). All the samples have been plotted in the VAG field. The dioritic rocks from the Bisheh have relatively high Mg# (0.4-0.56), which is consistent with derivation from mantle melts contaminated by continental crust (Rapp and Watson, 1995). The initial 87Sr/86Sr of Bisheh pyroxene diorite porphyry was 0.70606 and the (143Nd/144Nd)i isotope compositions and eNd value of these rocks was 0.512424 and -3.05, respectively. These values show that the magma originated from an enriched mantle with crustal contamination. Acknowledgements The authors are grateful to Professor Sun-Lin Chung from the Department of Geosciences, National Taiwan University, for supporting the researchers in the use of U-Th-Pb zircon age dating. References Berberian, M. and King, G.C., 1981. Towards a palaeogeography and tectonics evolution of Iran. Canadian Journal of Earth Science, 18(2): 210–265. Esmaeily, D., Nedelec, A., Valizadeh, M.V., Moore, F. and Cotton, J., 2005. Petrology of the Jurassic Shah-Kuh granite (eastern Iran), with reference to tin mineralization. Journal of Asian Earth Sciences, 25(6): 961-980. Tarkian, M., Lotfi, M. and Baumann, A., 1983. Tectonic, magmatism and the formation of mineral deposits in the central Lut, east Iran. Geological Survey of Iran, geodynamic project (geotraverse) in Iran, Tehran, Report 51, 519 pp. Moradi Noghondar, M., Karimpour, M.H., Farmer, G.L. and Stern, C.R., 2011-2012. Sr-Nd isotopic characteristic, U-Pb zircon geochronology, and petrogenesis of Najmabad Granodiorite batholith, Eastern Iran. Journal of Economic Geology, 3(2): 127-145. (in Persian) Pearce, J.A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: C.J. Hawkesworth and M. J. Norry (Editors), Continental basalts and mantle xenoliths. Shiva Publications, Nantwich, UK, pp. 230-249. Reagan, M. K. and Gill, J. B., 1989. Coexisting calcalkaline and high niobium basalts from Turrialba volcano, Costa Rica: implication for residual titanates in arc magma source. Journal of Geophysical Research, 94(B4): 4619-4633. Kuscu, I., Kuscu, G.G., Meinert, L.D. and Floyd, P.A., 2002. Tectonic setting and petrogenesis of the Celebi granitoid, (Kirikkale-Turkey) and comparison with world skarn granitoids. Journal of Geochemical Exploration, 76(3): 175–194. Rapp, R.P. and Watson, E.B., 1995. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust–mantle recycling. Journal of Petrology, 36(4): 891–931.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Economic Geology
Journal of Economic Geology Earth and Planetary Sciences-Economic Geology
CiteScore
0.60
自引率
0.00%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信