关于一类形式权重枚举数的黎曼假设

Pub Date : 2022-01-01 DOI:10.2206/kyushujm.76.441
Naoya Kaneko, Masakazu Yamagishi
{"title":"关于一类形式权重枚举数的黎曼假设","authors":"Naoya Kaneko, Masakazu Yamagishi","doi":"10.2206/kyushujm.76.441","DOIUrl":null,"url":null,"abstract":". A formal weight enumerator is a homogeneous polynomial in two variables which behaves like the Hamming weight enumerator of a self-dual linear code except that the coefficients are not necessarily non-negative integers. Chinen discovered several families of formal weight enumerators and investigated the validity of the Riemann hypothesis analogue for them. In this paper, the zeta polynomial is computed for Chinen’s formal weight enumerators, and a simple criterion is given for the validity of the Riemann hypothesis analogue. real number q > 0 , q (cid:54)= 1. Moreover, if A σ ( x , y ) = ε A ( x , y ) holds for the","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE RIEMANN HYPOTHESIS FOR A CERTAIN FAMILY OF FORMAL WEIGHT ENUMERATORS\",\"authors\":\"Naoya Kaneko, Masakazu Yamagishi\",\"doi\":\"10.2206/kyushujm.76.441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". A formal weight enumerator is a homogeneous polynomial in two variables which behaves like the Hamming weight enumerator of a self-dual linear code except that the coefficients are not necessarily non-negative integers. Chinen discovered several families of formal weight enumerators and investigated the validity of the Riemann hypothesis analogue for them. In this paper, the zeta polynomial is computed for Chinen’s formal weight enumerators, and a simple criterion is given for the validity of the Riemann hypothesis analogue. real number q > 0 , q (cid:54)= 1. Moreover, if A σ ( x , y ) = ε A ( x , y ) holds for the\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.76.441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.76.441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 形式权重枚举数是两个变量的齐次多项式,其行为类似于自对偶线性码的汉明权重枚举数,只是其系数不一定是非负整数。Chinen发现了几个正式权重枚举数族,并研究了黎曼假设类比对它们的有效性。本文计算了Chinen形式权重枚举数的zeta多项式,并给出了Riemann假设类比有效性的一个简单判据。实数q > 0, q (cid:54)= 1。此外,如果A σ (x, y) = ε A (x, y)成立
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
ON THE RIEMANN HYPOTHESIS FOR A CERTAIN FAMILY OF FORMAL WEIGHT ENUMERATORS
. A formal weight enumerator is a homogeneous polynomial in two variables which behaves like the Hamming weight enumerator of a self-dual linear code except that the coefficients are not necessarily non-negative integers. Chinen discovered several families of formal weight enumerators and investigated the validity of the Riemann hypothesis analogue for them. In this paper, the zeta polynomial is computed for Chinen’s formal weight enumerators, and a simple criterion is given for the validity of the Riemann hypothesis analogue. real number q > 0 , q (cid:54)= 1. Moreover, if A σ ( x , y ) = ε A ( x , y ) holds for the
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信