{"title":"齐次各向同性时空中半线性复ginzburg-landau型方程整体解的存在性和不存在性","authors":"Makoto Nakamura, Y. Sato","doi":"10.2206/kyushujm.75.169","DOIUrl":null,"url":null,"abstract":"The Cauchy problem for the semilinear complex Ginzburg–Landau type equation is considered in homogeneous and isotropic spacetime. Global solutions and their asymptotic behaviours for small initial data are obtained. The non-existence of non-trivial global solutions is also shown. The effects of spatial expansion and contraction are studied through the problem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXISTENCE AND NON-EXISTENCE OF GLOBAL SOLUTIONS FOR THE SEMILINEAR COMPLEX GINZBURG-LANDAU TYPE EQUATION IN HOMOGENEOUS AND ISOTROPIC SPACETIME\",\"authors\":\"Makoto Nakamura, Y. Sato\",\"doi\":\"10.2206/kyushujm.75.169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cauchy problem for the semilinear complex Ginzburg–Landau type equation is considered in homogeneous and isotropic spacetime. Global solutions and their asymptotic behaviours for small initial data are obtained. The non-existence of non-trivial global solutions is also shown. The effects of spatial expansion and contraction are studied through the problem.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.75.169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.75.169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EXISTENCE AND NON-EXISTENCE OF GLOBAL SOLUTIONS FOR THE SEMILINEAR COMPLEX GINZBURG-LANDAU TYPE EQUATION IN HOMOGENEOUS AND ISOTROPIC SPACETIME
The Cauchy problem for the semilinear complex Ginzburg–Landau type equation is considered in homogeneous and isotropic spacetime. Global solutions and their asymptotic behaviours for small initial data are obtained. The non-existence of non-trivial global solutions is also shown. The effects of spatial expansion and contraction are studied through the problem.