齐次各向同性时空中半线性复ginzburg-landau型方程整体解的存在性和不存在性

IF 0.6 4区 数学 Q3 MATHEMATICS
Makoto Nakamura, Y. Sato
{"title":"齐次各向同性时空中半线性复ginzburg-landau型方程整体解的存在性和不存在性","authors":"Makoto Nakamura, Y. Sato","doi":"10.2206/kyushujm.75.169","DOIUrl":null,"url":null,"abstract":"The Cauchy problem for the semilinear complex Ginzburg–Landau type equation is considered in homogeneous and isotropic spacetime. Global solutions and their asymptotic behaviours for small initial data are obtained. The non-existence of non-trivial global solutions is also shown. The effects of spatial expansion and contraction are studied through the problem.","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXISTENCE AND NON-EXISTENCE OF GLOBAL SOLUTIONS FOR THE SEMILINEAR COMPLEX GINZBURG-LANDAU TYPE EQUATION IN HOMOGENEOUS AND ISOTROPIC SPACETIME\",\"authors\":\"Makoto Nakamura, Y. Sato\",\"doi\":\"10.2206/kyushujm.75.169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cauchy problem for the semilinear complex Ginzburg–Landau type equation is considered in homogeneous and isotropic spacetime. Global solutions and their asymptotic behaviours for small initial data are obtained. The non-existence of non-trivial global solutions is also shown. The effects of spatial expansion and contraction are studied through the problem.\",\"PeriodicalId\":49929,\"journal\":{\"name\":\"Kyushu Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyushu Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.75.169\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.75.169","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了齐次各向同性时空中半线性复金兹堡-朗道型方程的柯西问题。得到了小初始数据的全局解及其渐近行为。证明了非平凡全局解的不存在性。通过该问题研究了空间膨胀和收缩的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXISTENCE AND NON-EXISTENCE OF GLOBAL SOLUTIONS FOR THE SEMILINEAR COMPLEX GINZBURG-LANDAU TYPE EQUATION IN HOMOGENEOUS AND ISOTROPIC SPACETIME
The Cauchy problem for the semilinear complex Ginzburg–Landau type equation is considered in homogeneous and isotropic spacetime. Global solutions and their asymptotic behaviours for small initial data are obtained. The non-existence of non-trivial global solutions is also shown. The effects of spatial expansion and contraction are studied through the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total. More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信