{"title":"二维二次非线性schrÖdinger方程的非齐次dirichlet边值问题","authors":"N. Hayashi, E. Kaikina","doi":"10.2206/kyushujm.74.375","DOIUrl":null,"url":null,"abstract":"We consider the inhomogeneous Dirichlet–boundary value problem for the quadratic nonlinear Schrödinger equations, which is considered as a critical case for the largetime asymptotics of solutions. We present sufficient conditions on the initial and boundary data which ensure asymptotic behavior of small solutions to the equations by using the classical energy method and factorization techniques of the free Schrödinger group.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INHOMOGENEOUS DIRICHLET-BOUNDARY VALUE PROBLEM FOR TWO-DIMENSIONAL QUADRATIC NONLINEAR SCHRÖDINGER EQUATIONS\",\"authors\":\"N. Hayashi, E. Kaikina\",\"doi\":\"10.2206/kyushujm.74.375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the inhomogeneous Dirichlet–boundary value problem for the quadratic nonlinear Schrödinger equations, which is considered as a critical case for the largetime asymptotics of solutions. We present sufficient conditions on the initial and boundary data which ensure asymptotic behavior of small solutions to the equations by using the classical energy method and factorization techniques of the free Schrödinger group.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.74.375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.74.375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
INHOMOGENEOUS DIRICHLET-BOUNDARY VALUE PROBLEM FOR TWO-DIMENSIONAL QUADRATIC NONLINEAR SCHRÖDINGER EQUATIONS
We consider the inhomogeneous Dirichlet–boundary value problem for the quadratic nonlinear Schrödinger equations, which is considered as a critical case for the largetime asymptotics of solutions. We present sufficient conditions on the initial and boundary data which ensure asymptotic behavior of small solutions to the equations by using the classical energy method and factorization techniques of the free Schrödinger group.