{"title":"透镜空间L (p, q)下量子SU(2)不变量ζ = e4π /r的渐近展开式","authors":"T. Takata, Rika Tanaka","doi":"10.2206/kyushujm.74.265","DOIUrl":null,"url":null,"abstract":"We give a formula for the quantum SU(2) invariant at ζ = e4π i/r for Lens space L(p, q), and we prove that the asymptotic expansion is represented by a sum of contributions from SL2C flat connections whose coefficients are square roots of the Reidemeister torsions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE ASYMPTOTIC EXPANSION OF THE QUANTUM SU(2) INVARIANT AT ζ = e4πi/r FOR LENS SPACE L (p, q)\",\"authors\":\"T. Takata, Rika Tanaka\",\"doi\":\"10.2206/kyushujm.74.265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a formula for the quantum SU(2) invariant at ζ = e4π i/r for Lens space L(p, q), and we prove that the asymptotic expansion is represented by a sum of contributions from SL2C flat connections whose coefficients are square roots of the Reidemeister torsions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.74.265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.74.265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ON THE ASYMPTOTIC EXPANSION OF THE QUANTUM SU(2) INVARIANT AT ζ = e4πi/r FOR LENS SPACE L (p, q)
We give a formula for the quantum SU(2) invariant at ζ = e4π i/r for Lens space L(p, q), and we prove that the asymptotic expansion is represented by a sum of contributions from SL2C flat connections whose coefficients are square roots of the Reidemeister torsions.