{"title":"由超几何函数fd导出的大久保型微分方程","authors":"Mitsuo Kato","doi":"10.2206/KYUSHUJM.75.1","DOIUrl":null,"url":null,"abstract":". From Lauricella’s hypergeometric functions in n variables, we construct a special type of Pfaffian equations of rank n + 1 called Okubo type differential equations. For each homogenized Okubo type differential equation, we construct special n + 1 coordinate functions called flat coordinate functions and an ( n + 1 ) -tuple of homogeneous functions called a potential vector.","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OKUBO TYPE DIFFERENTIAL EQUATIONS DERIVED FROM HYPERGEOMETRIC FUNCTIONS FD\",\"authors\":\"Mitsuo Kato\",\"doi\":\"10.2206/KYUSHUJM.75.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". From Lauricella’s hypergeometric functions in n variables, we construct a special type of Pfaffian equations of rank n + 1 called Okubo type differential equations. For each homogenized Okubo type differential equation, we construct special n + 1 coordinate functions called flat coordinate functions and an ( n + 1 ) -tuple of homogeneous functions called a potential vector.\",\"PeriodicalId\":49929,\"journal\":{\"name\":\"Kyushu Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyushu Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/KYUSHUJM.75.1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/KYUSHUJM.75.1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
OKUBO TYPE DIFFERENTIAL EQUATIONS DERIVED FROM HYPERGEOMETRIC FUNCTIONS FD
. From Lauricella’s hypergeometric functions in n variables, we construct a special type of Pfaffian equations of rank n + 1 called Okubo type differential equations. For each homogenized Okubo type differential equation, we construct special n + 1 coordinate functions called flat coordinate functions and an ( n + 1 ) -tuple of homogeneous functions called a potential vector.
期刊介绍:
The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total.
More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.