由超几何函数fd导出的大久保型微分方程

IF 0.6 4区 数学 Q3 MATHEMATICS
Mitsuo Kato
{"title":"由超几何函数fd导出的大久保型微分方程","authors":"Mitsuo Kato","doi":"10.2206/KYUSHUJM.75.1","DOIUrl":null,"url":null,"abstract":". From Lauricella’s hypergeometric functions in n variables, we construct a special type of Pfaffian equations of rank n + 1 called Okubo type differential equations. For each homogenized Okubo type differential equation, we construct special n + 1 coordinate functions called flat coordinate functions and an ( n + 1 ) -tuple of homogeneous functions called a potential vector.","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OKUBO TYPE DIFFERENTIAL EQUATIONS DERIVED FROM HYPERGEOMETRIC FUNCTIONS FD\",\"authors\":\"Mitsuo Kato\",\"doi\":\"10.2206/KYUSHUJM.75.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". From Lauricella’s hypergeometric functions in n variables, we construct a special type of Pfaffian equations of rank n + 1 called Okubo type differential equations. For each homogenized Okubo type differential equation, we construct special n + 1 coordinate functions called flat coordinate functions and an ( n + 1 ) -tuple of homogeneous functions called a potential vector.\",\"PeriodicalId\":49929,\"journal\":{\"name\":\"Kyushu Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyushu Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/KYUSHUJM.75.1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/KYUSHUJM.75.1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

。从Lauricella的n变量超几何函数出发,构造了一类特殊的n + 1秩的Pfaffian方程——Okubo型微分方程。对于每一个均匀化的Okubo型微分方程,我们构造了特殊的n + 1个坐标函数,称为平面坐标函数和一个(n + 1) -元组齐次函数,称为势向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OKUBO TYPE DIFFERENTIAL EQUATIONS DERIVED FROM HYPERGEOMETRIC FUNCTIONS FD
. From Lauricella’s hypergeometric functions in n variables, we construct a special type of Pfaffian equations of rank n + 1 called Okubo type differential equations. For each homogenized Okubo type differential equation, we construct special n + 1 coordinate functions called flat coordinate functions and an ( n + 1 ) -tuple of homogeneous functions called a potential vector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total. More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信