{"title":"两个变量的合流超几何函数的pfaffan系统","authors":"Shigeo Mukai","doi":"10.2206/kyushujm.74.63","DOIUrl":null,"url":null,"abstract":"We study Pfaffian systems of confluent hypergeometric functions of two variables with rank three, by using rational twisted cohomology groups associated with Euler-type integral representations of them. We give bases of the cohomology groups, whose intersection matrices depend only on parameters. Each connection matrix of our Pfaffian systems admits a decomposition into five parts, each of which is the product of a constant matrix and a rational 1-form on the space of variables.","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PFAFFIAN SYSTEMS OF CONFLUENT HYPERGEOMETRIC FUNCTIONS OF TWO VARIABLES\",\"authors\":\"Shigeo Mukai\",\"doi\":\"10.2206/kyushujm.74.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Pfaffian systems of confluent hypergeometric functions of two variables with rank three, by using rational twisted cohomology groups associated with Euler-type integral representations of them. We give bases of the cohomology groups, whose intersection matrices depend only on parameters. Each connection matrix of our Pfaffian systems admits a decomposition into five parts, each of which is the product of a constant matrix and a rational 1-form on the space of variables.\",\"PeriodicalId\":49929,\"journal\":{\"name\":\"Kyushu Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyushu Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.74.63\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.74.63","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
PFAFFIAN SYSTEMS OF CONFLUENT HYPERGEOMETRIC FUNCTIONS OF TWO VARIABLES
We study Pfaffian systems of confluent hypergeometric functions of two variables with rank three, by using rational twisted cohomology groups associated with Euler-type integral representations of them. We give bases of the cohomology groups, whose intersection matrices depend only on parameters. Each connection matrix of our Pfaffian systems admits a decomposition into five parts, each of which is the product of a constant matrix and a rational 1-form on the space of variables.
期刊介绍:
The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total.
More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.