{"title":"扭曲亚历山大多项式和矩阵加权zeta函数","authors":"H. Goda","doi":"10.2206/kyushujm.74.211","DOIUrl":null,"url":null,"abstract":". The twisted Alexander polynomial is an invariant of the pair of a knot and its group representation. Herein, we introduce a digraph obtained from an oriented knot diagram, which is used to study the twisted Alexander polynomial of knots. In this context, we show that the inverse of the twisted Alexander polynomial of a knot may be regarded as the matrix-weighted zeta function that is a generalization of the Ihara–Selberg zeta function of a directed weighted graph.","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TWISTED ALEXANDER POLYNOMIAL AND MATRIX-WEIGHTED ZETA FUNCTION\",\"authors\":\"H. Goda\",\"doi\":\"10.2206/kyushujm.74.211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The twisted Alexander polynomial is an invariant of the pair of a knot and its group representation. Herein, we introduce a digraph obtained from an oriented knot diagram, which is used to study the twisted Alexander polynomial of knots. In this context, we show that the inverse of the twisted Alexander polynomial of a knot may be regarded as the matrix-weighted zeta function that is a generalization of the Ihara–Selberg zeta function of a directed weighted graph.\",\"PeriodicalId\":49929,\"journal\":{\"name\":\"Kyushu Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyushu Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.74.211\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.74.211","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
TWISTED ALEXANDER POLYNOMIAL AND MATRIX-WEIGHTED ZETA FUNCTION
. The twisted Alexander polynomial is an invariant of the pair of a knot and its group representation. Herein, we introduce a digraph obtained from an oriented knot diagram, which is used to study the twisted Alexander polynomial of knots. In this context, we show that the inverse of the twisted Alexander polynomial of a knot may be regarded as the matrix-weighted zeta function that is a generalization of the Ihara–Selberg zeta function of a directed weighted graph.
期刊介绍:
The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total.
More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.