{"title":"两个等维fbh型域间的真全纯映射","authors":"A. Kodama","doi":"10.2206/kyushujm.74.149","DOIUrl":null,"url":null,"abstract":"We introduce a new class of domains Dn,m(μ, p), called FBH-type domains, in Cn × Cm , where 0< μ ∈ R and p ∈ N. In the special case of p = 1, these domains are just the Fock–Bargmann–Hartogs domains Dn,m(μ) in Cn × Cm introduced by Yamamori. In this paper we obtain a complete description of an arbitrarily given proper holomorphic mapping between two equidimensional FBH-type domains. In particular, we prove that the holomorphic automorphism group Aut(Dn,m(μ, p)) of any FBH-type domain Dn,m(μ, p) with p 6= 1 is a Lie group isomorphic to the compact connected Lie group U (n)×U (m). This tells us that the structure of Aut(Dn,m(μ, p)) with p 6= 1 is essentially different from that of Aut(Dn,m(μ)).","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":"45 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON PROPER HOLOMORPHIC MAPPINGS BETWEEN TWO EQUIDIMENSIONAL FBH-TYPE DOMAINS\",\"authors\":\"A. Kodama\",\"doi\":\"10.2206/kyushujm.74.149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new class of domains Dn,m(μ, p), called FBH-type domains, in Cn × Cm , where 0< μ ∈ R and p ∈ N. In the special case of p = 1, these domains are just the Fock–Bargmann–Hartogs domains Dn,m(μ) in Cn × Cm introduced by Yamamori. In this paper we obtain a complete description of an arbitrarily given proper holomorphic mapping between two equidimensional FBH-type domains. In particular, we prove that the holomorphic automorphism group Aut(Dn,m(μ, p)) of any FBH-type domain Dn,m(μ, p) with p 6= 1 is a Lie group isomorphic to the compact connected Lie group U (n)×U (m). This tells us that the structure of Aut(Dn,m(μ, p)) with p 6= 1 is essentially different from that of Aut(Dn,m(μ)).\",\"PeriodicalId\":49929,\"journal\":{\"name\":\"Kyushu Journal of Mathematics\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyushu Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.74.149\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.74.149","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
ON PROPER HOLOMORPHIC MAPPINGS BETWEEN TWO EQUIDIMENSIONAL FBH-TYPE DOMAINS
We introduce a new class of domains Dn,m(μ, p), called FBH-type domains, in Cn × Cm , where 0< μ ∈ R and p ∈ N. In the special case of p = 1, these domains are just the Fock–Bargmann–Hartogs domains Dn,m(μ) in Cn × Cm introduced by Yamamori. In this paper we obtain a complete description of an arbitrarily given proper holomorphic mapping between two equidimensional FBH-type domains. In particular, we prove that the holomorphic automorphism group Aut(Dn,m(μ, p)) of any FBH-type domain Dn,m(μ, p) with p 6= 1 is a Lie group isomorphic to the compact connected Lie group U (n)×U (m). This tells us that the structure of Aut(Dn,m(μ, p)) with p 6= 1 is essentially different from that of Aut(Dn,m(μ)).
期刊介绍:
The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total.
More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.