{"title":"具有闭合非∗正则轨道的指数李群的c * -代数中l1确定的原始理想","authors":"Junko Inoue, J. Ludwig","doi":"10.2206/kyushujm.74.127","DOIUrl":null,"url":null,"abstract":"Let G = exp(g) be an exponential solvable Lie group and Ad(G)⊂ D an exponential solvable Lie group of automorphisms of G. Assume that for every non-∗-regular orbit D · q, q ∈ g, of D= exp(d) in g, there exists a nilpotent ideal n of g containing d · g such that D · q|n is closed in n. We then show that for every D-orbit in g the kernel kerC∗() of in the C-algebra of G is L1-determined, which means that kerC∗() is the closure of the kernel kerL1() of in the group algebra L 1(G). This establishes also a new proof of a result of Ungermann, who obtained the same result for the trivial group D= Ad(G). We finally give an example of a non-closed non-∗-regular orbit of an exponential solvable group G and of a coadjoint orbit O ⊂ g, for which the corresponding kernel kerC∗(πO) in C(G) is not L1-determined.","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L1-DETERMINED PRIMITIVE IDEALS IN THE C∗-ALGEBRA OF AN EXPONENTIAL LIE GROUP WITH CLOSED NON-∗-REGULAR ORBITS\",\"authors\":\"Junko Inoue, J. Ludwig\",\"doi\":\"10.2206/kyushujm.74.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G = exp(g) be an exponential solvable Lie group and Ad(G)⊂ D an exponential solvable Lie group of automorphisms of G. Assume that for every non-∗-regular orbit D · q, q ∈ g, of D= exp(d) in g, there exists a nilpotent ideal n of g containing d · g such that D · q|n is closed in n. We then show that for every D-orbit in g the kernel kerC∗() of in the C-algebra of G is L1-determined, which means that kerC∗() is the closure of the kernel kerL1() of in the group algebra L 1(G). This establishes also a new proof of a result of Ungermann, who obtained the same result for the trivial group D= Ad(G). We finally give an example of a non-closed non-∗-regular orbit of an exponential solvable group G and of a coadjoint orbit O ⊂ g, for which the corresponding kernel kerC∗(πO) in C(G) is not L1-determined.\",\"PeriodicalId\":49929,\"journal\":{\"name\":\"Kyushu Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyushu Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.74.127\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.74.127","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让G = exp (G)是一个指数可解李集团和广告(G)⊂D指数可解李群同构的G .假定每一个非∗常规轨道D·q q∈G, G D = exp (D),存在一个幂零理想n含有D·G这样的G D·q | n n关闭。然后,我们表明,每D-orbitG内核柯尔克∗()G的C-algebra L1-determined,这意味着柯尔克∗()关闭内核kerL1()的组代数1 L (G)。这也建立了Ungermann对平凡群D= Ad(G)的相同结果的一个新的证明。最后给出了指数可解群G的非闭非∗正则轨道和伴随轨道O∧G的一个例子,它们在C(G)中对应的核kerC∗(πO)不是l1确定的。
L1-DETERMINED PRIMITIVE IDEALS IN THE C∗-ALGEBRA OF AN EXPONENTIAL LIE GROUP WITH CLOSED NON-∗-REGULAR ORBITS
Let G = exp(g) be an exponential solvable Lie group and Ad(G)⊂ D an exponential solvable Lie group of automorphisms of G. Assume that for every non-∗-regular orbit D · q, q ∈ g, of D= exp(d) in g, there exists a nilpotent ideal n of g containing d · g such that D · q|n is closed in n. We then show that for every D-orbit in g the kernel kerC∗() of in the C-algebra of G is L1-determined, which means that kerC∗() is the closure of the kernel kerL1() of in the group algebra L 1(G). This establishes also a new proof of a result of Ungermann, who obtained the same result for the trivial group D= Ad(G). We finally give an example of a non-closed non-∗-regular orbit of an exponential solvable group G and of a coadjoint orbit O ⊂ g, for which the corresponding kernel kerC∗(πO) in C(G) is not L1-determined.
期刊介绍:
The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total.
More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.