Cr统计子流形

Pub Date : 2019-01-01 DOI:10.2206/kyushujm.73.89
M. Milijević
{"title":"Cr统计子流形","authors":"M. Milijević","doi":"10.2206/kyushujm.73.89","DOIUrl":null,"url":null,"abstract":"The non-existence of CR submanifolds of maximal CR dimension with umbilical shape operator in holomorphic statistical manifolds is proven. Our results are a generalization of the known results in the theory of CR submanifolds in complex space forms. Statistical manifolds in this paper are considered as manifolds consisting of certain probability density functions. In this setting we have two shape operators in the distinguished normal vector field direction with respect to the affine connection of the ambient space, and the one with respect to the dual connection. After obtaining the fundamental equations for CR submanifolds in holomorphic statistical manifolds, we examine umbilical dual shape operators.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"CR STATISTICAL SUBMANIFOLDS\",\"authors\":\"M. Milijević\",\"doi\":\"10.2206/kyushujm.73.89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The non-existence of CR submanifolds of maximal CR dimension with umbilical shape operator in holomorphic statistical manifolds is proven. Our results are a generalization of the known results in the theory of CR submanifolds in complex space forms. Statistical manifolds in this paper are considered as manifolds consisting of certain probability density functions. In this setting we have two shape operators in the distinguished normal vector field direction with respect to the affine connection of the ambient space, and the one with respect to the dual connection. After obtaining the fundamental equations for CR submanifolds in holomorphic statistical manifolds, we examine umbilical dual shape operators.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.73.89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.73.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

证明了全纯统计流形中具有脐形算子的CR子流形的不存在性。我们的结果是对复空间形式CR子流形理论中已知结果的推广。本文认为统计流形是由一定的概率密度函数组成的流形。在这种情况下,我们有两个形状算符在区分法向量场方向上关于周围空间的仿射连接,一个关于对偶连接。在得到全纯统计流形中CR子流形的基本方程后,研究了脐对偶形状算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
CR STATISTICAL SUBMANIFOLDS
The non-existence of CR submanifolds of maximal CR dimension with umbilical shape operator in holomorphic statistical manifolds is proven. Our results are a generalization of the known results in the theory of CR submanifolds in complex space forms. Statistical manifolds in this paper are considered as manifolds consisting of certain probability density functions. In this setting we have two shape operators in the distinguished normal vector field direction with respect to the affine connection of the ambient space, and the one with respect to the dual connection. After obtaining the fundamental equations for CR submanifolds in holomorphic statistical manifolds, we examine umbilical dual shape operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信