{"title":"通过退化的Loxodromic eisenstein系列","authors":"Y. Irie","doi":"10.2206/kyushujm.73.357","DOIUrl":null,"url":null,"abstract":"The loxodromic Eisenstein series is defined for a loxodromic element of cofinite Kleinian groups. It is the analogue of the ordinary Eisenstein series associated to cusps. We study the asymptotic behavior of the loxodromic Eisenstein series for degenerating sequences of three-dimensional hyperbolic manifolds of finite volume. In particular, we prove that if the loxodromic element corresponds to the degenerating geodesic, then the associated loxodromic Eisenstein series converges to the ordinary Eisenstein series associated to the newly developing cusp on the limit manifold.","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LOXODROMIC EISENSTEIN SERIES THROUGH DEGENERATION\",\"authors\":\"Y. Irie\",\"doi\":\"10.2206/kyushujm.73.357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The loxodromic Eisenstein series is defined for a loxodromic element of cofinite Kleinian groups. It is the analogue of the ordinary Eisenstein series associated to cusps. We study the asymptotic behavior of the loxodromic Eisenstein series for degenerating sequences of three-dimensional hyperbolic manifolds of finite volume. In particular, we prove that if the loxodromic element corresponds to the degenerating geodesic, then the associated loxodromic Eisenstein series converges to the ordinary Eisenstein series associated to the newly developing cusp on the limit manifold.\",\"PeriodicalId\":49929,\"journal\":{\"name\":\"Kyushu Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyushu Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.73.357\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.73.357","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The loxodromic Eisenstein series is defined for a loxodromic element of cofinite Kleinian groups. It is the analogue of the ordinary Eisenstein series associated to cusps. We study the asymptotic behavior of the loxodromic Eisenstein series for degenerating sequences of three-dimensional hyperbolic manifolds of finite volume. In particular, we prove that if the loxodromic element corresponds to the degenerating geodesic, then the associated loxodromic Eisenstein series converges to the ordinary Eisenstein series associated to the newly developing cusp on the limit manifold.
期刊介绍:
The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total.
More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.