偏malliavin微积分在baouendi-grushin算子中的应用

Pub Date : 2019-01-01 DOI:10.2206/kyushujm.73.417
S. Taniguchi
{"title":"偏malliavin微积分在baouendi-grushin算子中的应用","authors":"S. Taniguchi","doi":"10.2206/kyushujm.73.417","DOIUrl":null,"url":null,"abstract":"The existence and the continuity of the transition density function of the diffusion process generated by the Baouendi–Grushin operator is shown with the help of the partial Malliavin calculus. For this purpose, the partial Malliavin calculus is reformulated in terms of Watanabe’s distribution theory on Wiener spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AN APPLICATION OF THE PARTIAL MALLIAVIN CALCULUS TO BAOUENDI-GRUSHIN OPERATORS\",\"authors\":\"S. Taniguchi\",\"doi\":\"10.2206/kyushujm.73.417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence and the continuity of the transition density function of the diffusion process generated by the Baouendi–Grushin operator is shown with the help of the partial Malliavin calculus. For this purpose, the partial Malliavin calculus is reformulated in terms of Watanabe’s distribution theory on Wiener spaces.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.73.417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.73.417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用偏Malliavin演算证明了Baouendi-Grushin算子生成的扩散过程过渡密度函数的存在性和连续性。为此,根据Watanabe在Wiener空间上的分布理论,对偏Malliavin演算进行了重新表述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
AN APPLICATION OF THE PARTIAL MALLIAVIN CALCULUS TO BAOUENDI-GRUSHIN OPERATORS
The existence and the continuity of the transition density function of the diffusion process generated by the Baouendi–Grushin operator is shown with the help of the partial Malliavin calculus. For this purpose, the partial Malliavin calculus is reformulated in terms of Watanabe’s distribution theory on Wiener spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信