Fuminori Kawamoto, Y. Kishi, H. Suzuki, Koshi Tomita
{"title":"实数二次域,连分式,以及e型的初级对称部分的构造","authors":"Fuminori Kawamoto, Y. Kishi, H. Suzuki, Koshi Tomita","doi":"10.2206/kyushujm.73.165","DOIUrl":null,"url":null,"abstract":"For a non-square positive integer d with 4 d , put ω(d) := (1+ √ d)/2 if d is congruent to 1 modulo 4 and ω(d) := √ d otherwise. Let a1, a2, . . . , a`−1 be the symmetric part of the simple continued fraction expansion of ω(d). We say that the sequence a1, a2, . . . , a[`/2] is the primary symmetric part of the simple continued fraction expansion of ω(d). A notion of ‘ELE type’ for a finite sequence was introduced in Kawamoto et al (Comment. Math. Univ. St. Pauli 64(2) (2015), 131–155). The aims of this paper are to introduce a notion of ‘pre-ELE type’ for a finite sequence and to give a way of constructing primary symmetric parts of ELE type. As a byproduct, we show that there exist infinitely many real quadratic fields with period ` of minimal type for each even `≥ 6.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2206/kyushujm.73.165","citationCount":"4","resultStr":"{\"title\":\"REAL QUADRATIC FIELDS, CONTINUED FRACTIONS, AND A CONSTRUCTION OF PRIMARY SYMMETRIC PARTS OF ELE TYPE\",\"authors\":\"Fuminori Kawamoto, Y. Kishi, H. Suzuki, Koshi Tomita\",\"doi\":\"10.2206/kyushujm.73.165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a non-square positive integer d with 4 d , put ω(d) := (1+ √ d)/2 if d is congruent to 1 modulo 4 and ω(d) := √ d otherwise. Let a1, a2, . . . , a`−1 be the symmetric part of the simple continued fraction expansion of ω(d). We say that the sequence a1, a2, . . . , a[`/2] is the primary symmetric part of the simple continued fraction expansion of ω(d). A notion of ‘ELE type’ for a finite sequence was introduced in Kawamoto et al (Comment. Math. Univ. St. Pauli 64(2) (2015), 131–155). The aims of this paper are to introduce a notion of ‘pre-ELE type’ for a finite sequence and to give a way of constructing primary symmetric parts of ELE type. As a byproduct, we show that there exist infinitely many real quadratic fields with period ` of minimal type for each even `≥ 6.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2206/kyushujm.73.165\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.73.165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.73.165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
对于具有4d的非平方正整数d,如果d等于1模4,则设ω(d):=(1+√d)/2,否则设ω(d):=√d。设a1 a2。, a '−1是ω(d)的简单连分式展开式的对称部分。我们说序列a1, a2,…, a[' /2]是ω(d)的简单连分式展开式的初等对称部分。Kawamoto等人(评论)引入了有限序列的“ELE型”概念。数学。圣保利大学学报,64(2)(2015),131-155。本文的目的是为有限序列引入“前ELE型”的概念,并给出构造ELE型的初级对称部分的一种方法。作为副产物,我们证明了存在无穷多个周期为最小型的实二次域,对于每一个偶数≥6。
REAL QUADRATIC FIELDS, CONTINUED FRACTIONS, AND A CONSTRUCTION OF PRIMARY SYMMETRIC PARTS OF ELE TYPE
For a non-square positive integer d with 4 d , put ω(d) := (1+ √ d)/2 if d is congruent to 1 modulo 4 and ω(d) := √ d otherwise. Let a1, a2, . . . , a`−1 be the symmetric part of the simple continued fraction expansion of ω(d). We say that the sequence a1, a2, . . . , a[`/2] is the primary symmetric part of the simple continued fraction expansion of ω(d). A notion of ‘ELE type’ for a finite sequence was introduced in Kawamoto et al (Comment. Math. Univ. St. Pauli 64(2) (2015), 131–155). The aims of this paper are to introduce a notion of ‘pre-ELE type’ for a finite sequence and to give a way of constructing primary symmetric parts of ELE type. As a byproduct, we show that there exist infinitely many real quadratic fields with period ` of minimal type for each even `≥ 6.