{"title":"无界正自伴随算子的绝对连续性","authors":"H. Kosaki","doi":"10.2206/KYUSHUJM.72.407","DOIUrl":null,"url":null,"abstract":"The notion of absolute continuity for positive operators was studied by T. Ando, where parallel sums for such operators played an important role. On the other hand, a theory for parallel sums for densely defined positive self-adjoint operators (or more generally positive forms) was developed in our previous work. Based on this theory, we will investigate the notion of absolute continuity in such unbounded cases.","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":"72 1","pages":"407-421"},"PeriodicalIF":0.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2206/KYUSHUJM.72.407","citationCount":"2","resultStr":"{\"title\":\"ABSOLUTE CONTINUITY FOR UNBOUNDED POSITIVE SELF-ADJOINT OPERATORS\",\"authors\":\"H. Kosaki\",\"doi\":\"10.2206/KYUSHUJM.72.407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of absolute continuity for positive operators was studied by T. Ando, where parallel sums for such operators played an important role. On the other hand, a theory for parallel sums for densely defined positive self-adjoint operators (or more generally positive forms) was developed in our previous work. Based on this theory, we will investigate the notion of absolute continuity in such unbounded cases.\",\"PeriodicalId\":49929,\"journal\":{\"name\":\"Kyushu Journal of Mathematics\",\"volume\":\"72 1\",\"pages\":\"407-421\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2206/KYUSHUJM.72.407\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyushu Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/KYUSHUJM.72.407\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/KYUSHUJM.72.407","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
T. Ando研究了正算子的绝对连续性的概念,其中这类算子的并行和起了重要作用。另一方面,我们在以前的工作中发展了密集定义的正自伴随算子(或更一般的正形式)的平行和理论。基于这一理论,我们将研究这种无界情况下的绝对连续性的概念。
ABSOLUTE CONTINUITY FOR UNBOUNDED POSITIVE SELF-ADJOINT OPERATORS
The notion of absolute continuity for positive operators was studied by T. Ando, where parallel sums for such operators played an important role. On the other hand, a theory for parallel sums for densely defined positive self-adjoint operators (or more generally positive forms) was developed in our previous work. Based on this theory, we will investigate the notion of absolute continuity in such unbounded cases.
期刊介绍:
The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total.
More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.