{"title":"关于Rn中星形曲线的几何","authors":"Stefan A. HOROCHOLYN","doi":"10.2206/kyushujm.73.123","DOIUrl":null,"url":null,"abstract":". The manifold M of star-shaped curves in R n is considered via the theory of connections on vector bundles, and cyclic D -modules. The appropriate notion of an ‘integral curve’ (i.e. certain admissible deformations) on M is defined, and the resulting space of admissible deformations is classified via iso-spectral flows, which are shown to be described by equations from the n -KdV (Korteweg–de Vries) hierarchy.","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE GEOMETRY OF STAR-SHAPED CURVES IN Rn\",\"authors\":\"Stefan A. HOROCHOLYN\",\"doi\":\"10.2206/kyushujm.73.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The manifold M of star-shaped curves in R n is considered via the theory of connections on vector bundles, and cyclic D -modules. The appropriate notion of an ‘integral curve’ (i.e. certain admissible deformations) on M is defined, and the resulting space of admissible deformations is classified via iso-spectral flows, which are shown to be described by equations from the n -KdV (Korteweg–de Vries) hierarchy.\",\"PeriodicalId\":49929,\"journal\":{\"name\":\"Kyushu Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyushu Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.73.123\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.73.123","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
. The manifold M of star-shaped curves in R n is considered via the theory of connections on vector bundles, and cyclic D -modules. The appropriate notion of an ‘integral curve’ (i.e. certain admissible deformations) on M is defined, and the resulting space of admissible deformations is classified via iso-spectral flows, which are shown to be described by equations from the n -KdV (Korteweg–de Vries) hierarchy.
期刊介绍:
The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total.
More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.