{"title":"注意以2为底的费马商的同余","authors":"H. Ichimura","doi":"10.2206/kyushujm.73.115","DOIUrl":null,"url":null,"abstract":"A classical congruence of Eisenstein and Lerch for the Fermat quotient with base 2 is generalized by Skula and Dobson. We give an alternative proof for the general congruence using a ‘Fermat quotient’ associated to a unit of an abelian number field.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2206/kyushujm.73.115","citationCount":"2","resultStr":"{\"title\":\"NOTE ON A CONGRUENCE FOR THE FERMAT QUOTIENT WITH BASE 2\",\"authors\":\"H. Ichimura\",\"doi\":\"10.2206/kyushujm.73.115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A classical congruence of Eisenstein and Lerch for the Fermat quotient with base 2 is generalized by Skula and Dobson. We give an alternative proof for the general congruence using a ‘Fermat quotient’ associated to a unit of an abelian number field.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2206/kyushujm.73.115\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.73.115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.73.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NOTE ON A CONGRUENCE FOR THE FERMAT QUOTIENT WITH BASE 2
A classical congruence of Eisenstein and Lerch for the Fermat quotient with base 2 is generalized by Skula and Dobson. We give an alternative proof for the general congruence using a ‘Fermat quotient’ associated to a unit of an abelian number field.