从BURNSIDE环到逆极限的同态核II: G = Cpm × Cpn

Pub Date : 2018-01-01 DOI:10.2206/KYUSHUJM.72.95
M. Morimoto, Masafumi Sugimura
{"title":"从BURNSIDE环到逆极限的同态核II: G = Cpm × Cpn","authors":"M. Morimoto, Masafumi Sugimura","doi":"10.2206/KYUSHUJM.72.95","DOIUrl":null,"url":null,"abstract":"Let G be a finite group and A(G) the Burnside ring of G. The family of rings A(H), where H ranges over the set of all proper subgroups of G, yields the inverse limit L(G) and a canonical homomorphism from A(G) to L(G) which is called the restriction map. Let Q(G) be the cokernel of this homomorphism. It is known that Q(G) is a finite abelian group and is isomorphic to the cartesian product of Q(G/N (p)), where p runs over the set of primes dividing the order of G and N (p) stands for the smallest normal subgroup of G such that the order of G/N (p) is a power of p. Therefore, it is important to investigate Q(G) for G of prime power order. In this paper we develop a way to compute Q(G) for cartesian products G of two cyclic p-groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COKERNELS OF HOMOMORPHISMS FROM BURNSIDE RINGS TO INVERSE LIMITS II: G = Cpm × Cpn\",\"authors\":\"M. Morimoto, Masafumi Sugimura\",\"doi\":\"10.2206/KYUSHUJM.72.95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a finite group and A(G) the Burnside ring of G. The family of rings A(H), where H ranges over the set of all proper subgroups of G, yields the inverse limit L(G) and a canonical homomorphism from A(G) to L(G) which is called the restriction map. Let Q(G) be the cokernel of this homomorphism. It is known that Q(G) is a finite abelian group and is isomorphic to the cartesian product of Q(G/N (p)), where p runs over the set of primes dividing the order of G and N (p) stands for the smallest normal subgroup of G such that the order of G/N (p) is a power of p. Therefore, it is important to investigate Q(G) for G of prime power order. In this paper we develop a way to compute Q(G) for cartesian products G of two cyclic p-groups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/KYUSHUJM.72.95\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/KYUSHUJM.72.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个有限群,a (G)是G的Burnside环。环族a (H),其中H作用于G的所有固有子群的集合上,得到了逆极限L(G)和从a (G)到L(G)的正则同态,称为限制映射。设Q(G)是这个同态的核。已知Q(G)是一个有限阿贝尔群,与Q(G/N (p))的笛卡尔积同构,其中p遍历除以G阶的素数集合,N (p)表示G的最小正规子群,使得G/N (p)的阶是p的幂次。因此,研究Q(G)对于素数幂次的G是很重要的。本文给出了计算两个循环p群的笛卡尔积G的Q(G)的一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
COKERNELS OF HOMOMORPHISMS FROM BURNSIDE RINGS TO INVERSE LIMITS II: G = Cpm × Cpn
Let G be a finite group and A(G) the Burnside ring of G. The family of rings A(H), where H ranges over the set of all proper subgroups of G, yields the inverse limit L(G) and a canonical homomorphism from A(G) to L(G) which is called the restriction map. Let Q(G) be the cokernel of this homomorphism. It is known that Q(G) is a finite abelian group and is isomorphic to the cartesian product of Q(G/N (p)), where p runs over the set of primes dividing the order of G and N (p) stands for the smallest normal subgroup of G such that the order of G/N (p) is a power of p. Therefore, it is important to investigate Q(G) for G of prime power order. In this paper we develop a way to compute Q(G) for cartesian products G of two cyclic p-groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信