{"title":"有限总曲率完全极小曲面高斯映射亚一般位置超曲面上的分枝","authors":"D. D. Thai, Pham Duc Thoan","doi":"10.2206/KYUSHUJM.72.253","DOIUrl":null,"url":null,"abstract":"The first aim of this paper is to show the second main theorem for holomorphic maps from a compact Riemann surface into the complex projective space which is ramified over hypersurfaces in subgeneral position. We then use it to study the ramification over hypersurfaces of the generalized Gauss map of complete regular minimal surfaces in Rm with finite total curvature, sharing hypersurfaces in subgeneral position. The results generalize our previous results [Thai and Thoan, Vietnam J. Math. 2017, doi:10.1007/s10013-017-0259-6].","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":"9 1","pages":"253-267"},"PeriodicalIF":0.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2206/KYUSHUJM.72.253","citationCount":"0","resultStr":"{\"title\":\"RAMIFICATION OVER HYPERSURFACES LOCATED IN SUBGENERAL POSITION OF THE GAUSS MAP OF COMPLETE MINIMAL SURFACES WITH FINITE TOTAL CURVATURE\",\"authors\":\"D. D. Thai, Pham Duc Thoan\",\"doi\":\"10.2206/KYUSHUJM.72.253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first aim of this paper is to show the second main theorem for holomorphic maps from a compact Riemann surface into the complex projective space which is ramified over hypersurfaces in subgeneral position. We then use it to study the ramification over hypersurfaces of the generalized Gauss map of complete regular minimal surfaces in Rm with finite total curvature, sharing hypersurfaces in subgeneral position. The results generalize our previous results [Thai and Thoan, Vietnam J. Math. 2017, doi:10.1007/s10013-017-0259-6].\",\"PeriodicalId\":49929,\"journal\":{\"name\":\"Kyushu Journal of Mathematics\",\"volume\":\"9 1\",\"pages\":\"253-267\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2206/KYUSHUJM.72.253\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyushu Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/KYUSHUJM.72.253\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/KYUSHUJM.72.253","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文的第一个目的是证明从紧黎曼曲面到复射影空间的全纯映射的第二个主要定理。然后,我们利用它研究了有限总曲率Rm中完全正则极小曲面的广义高斯映射在超曲面上的分支,在次一般位置共享超曲面。结果概括了我们之前的结果[Thai and than, Vietnam J. Math. 2017, doi:10.1007/s10013-017-0259-6]。
RAMIFICATION OVER HYPERSURFACES LOCATED IN SUBGENERAL POSITION OF THE GAUSS MAP OF COMPLETE MINIMAL SURFACES WITH FINITE TOTAL CURVATURE
The first aim of this paper is to show the second main theorem for holomorphic maps from a compact Riemann surface into the complex projective space which is ramified over hypersurfaces in subgeneral position. We then use it to study the ramification over hypersurfaces of the generalized Gauss map of complete regular minimal surfaces in Rm with finite total curvature, sharing hypersurfaces in subgeneral position. The results generalize our previous results [Thai and Thoan, Vietnam J. Math. 2017, doi:10.1007/s10013-017-0259-6].
期刊介绍:
The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total.
More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.