有限总曲率完全极小曲面高斯映射亚一般位置超曲面上的分枝

Pub Date : 2018-01-01 DOI:10.2206/KYUSHUJM.72.253
D. D. Thai, Pham Duc Thoan
{"title":"有限总曲率完全极小曲面高斯映射亚一般位置超曲面上的分枝","authors":"D. D. Thai, Pham Duc Thoan","doi":"10.2206/KYUSHUJM.72.253","DOIUrl":null,"url":null,"abstract":"The first aim of this paper is to show the second main theorem for holomorphic maps from a compact Riemann surface into the complex projective space which is ramified over hypersurfaces in subgeneral position. We then use it to study the ramification over hypersurfaces of the generalized Gauss map of complete regular minimal surfaces in Rm with finite total curvature, sharing hypersurfaces in subgeneral position. The results generalize our previous results [Thai and Thoan, Vietnam J. Math. 2017, doi:10.1007/s10013-017-0259-6].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2206/KYUSHUJM.72.253","citationCount":"0","resultStr":"{\"title\":\"RAMIFICATION OVER HYPERSURFACES LOCATED IN SUBGENERAL POSITION OF THE GAUSS MAP OF COMPLETE MINIMAL SURFACES WITH FINITE TOTAL CURVATURE\",\"authors\":\"D. D. Thai, Pham Duc Thoan\",\"doi\":\"10.2206/KYUSHUJM.72.253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first aim of this paper is to show the second main theorem for holomorphic maps from a compact Riemann surface into the complex projective space which is ramified over hypersurfaces in subgeneral position. We then use it to study the ramification over hypersurfaces of the generalized Gauss map of complete regular minimal surfaces in Rm with finite total curvature, sharing hypersurfaces in subgeneral position. The results generalize our previous results [Thai and Thoan, Vietnam J. Math. 2017, doi:10.1007/s10013-017-0259-6].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2206/KYUSHUJM.72.253\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/KYUSHUJM.72.253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/KYUSHUJM.72.253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的第一个目的是证明从紧黎曼曲面到复射影空间的全纯映射的第二个主要定理。然后,我们利用它研究了有限总曲率Rm中完全正则极小曲面的广义高斯映射在超曲面上的分支,在次一般位置共享超曲面。结果概括了我们之前的结果[Thai and than, Vietnam J. Math. 2017, doi:10.1007/s10013-017-0259-6]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
RAMIFICATION OVER HYPERSURFACES LOCATED IN SUBGENERAL POSITION OF THE GAUSS MAP OF COMPLETE MINIMAL SURFACES WITH FINITE TOTAL CURVATURE
The first aim of this paper is to show the second main theorem for holomorphic maps from a compact Riemann surface into the complex projective space which is ramified over hypersurfaces in subgeneral position. We then use it to study the ramification over hypersurfaces of the generalized Gauss map of complete regular minimal surfaces in Rm with finite total curvature, sharing hypersurfaces in subgeneral position. The results generalize our previous results [Thai and Thoan, Vietnam J. Math. 2017, doi:10.1007/s10013-017-0259-6].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信