{"title":"某些完全里奇孤子上漂移拉普拉斯特征值的估计","authors":"Lingzhong Zeng","doi":"10.2206/KYUSHUJM.72.143","DOIUrl":null,"url":null,"abstract":"Ricci solitons are the self-similar solutions to the Ricci flow, which play an important role in understanding the singularity dilations of the Ricci flow. In this paper, we investigate eigenvalues of the Dirichlet problem of a drifting Laplacian on some important complete Ricci solitons: the product shrinking Ricci soliton, cigar soliton, and so on. Since eigenvalues are invariant of isometries, we can give the estimates for the eigenvalues of a drifting Laplacian on the rotationally invariant shrinking solitons. In addition, we also obtain a sharp upper bound of the kth eigenvalue of the a drifting Laplacian on the product Ricci soliton in the sense of order k.","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":"72 1","pages":"143-156"},"PeriodicalIF":0.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2206/KYUSHUJM.72.143","citationCount":"9","resultStr":"{\"title\":\"ESTIMATES FOR THE EIGENVALUES OF THE DRIFTING LAPLACIAN ON SOME COMPLETE RICCI SOLITONS\",\"authors\":\"Lingzhong Zeng\",\"doi\":\"10.2206/KYUSHUJM.72.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ricci solitons are the self-similar solutions to the Ricci flow, which play an important role in understanding the singularity dilations of the Ricci flow. In this paper, we investigate eigenvalues of the Dirichlet problem of a drifting Laplacian on some important complete Ricci solitons: the product shrinking Ricci soliton, cigar soliton, and so on. Since eigenvalues are invariant of isometries, we can give the estimates for the eigenvalues of a drifting Laplacian on the rotationally invariant shrinking solitons. In addition, we also obtain a sharp upper bound of the kth eigenvalue of the a drifting Laplacian on the product Ricci soliton in the sense of order k.\",\"PeriodicalId\":49929,\"journal\":{\"name\":\"Kyushu Journal of Mathematics\",\"volume\":\"72 1\",\"pages\":\"143-156\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2206/KYUSHUJM.72.143\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyushu Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/KYUSHUJM.72.143\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/KYUSHUJM.72.143","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
ESTIMATES FOR THE EIGENVALUES OF THE DRIFTING LAPLACIAN ON SOME COMPLETE RICCI SOLITONS
Ricci solitons are the self-similar solutions to the Ricci flow, which play an important role in understanding the singularity dilations of the Ricci flow. In this paper, we investigate eigenvalues of the Dirichlet problem of a drifting Laplacian on some important complete Ricci solitons: the product shrinking Ricci soliton, cigar soliton, and so on. Since eigenvalues are invariant of isometries, we can give the estimates for the eigenvalues of a drifting Laplacian on the rotationally invariant shrinking solitons. In addition, we also obtain a sharp upper bound of the kth eigenvalue of the a drifting Laplacian on the product Ricci soliton in the sense of order k.
期刊介绍:
The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total.
More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.