不同稳态工况下轻水堆的热水力分析,第1部分:沸水堆

IF 0.9 4区 工程技术 Q3 NUCLEAR SCIENCE & TECHNOLOGY
E. Hutli, Ramadan Kridan
{"title":"不同稳态工况下轻水堆的热水力分析,第1部分:沸水堆","authors":"E. Hutli, Ramadan Kridan","doi":"10.2298/ntrp2204259h","DOIUrl":null,"url":null,"abstract":"The steady-state thermal-hydraulic analysis of the core of the Boiling Water Reactor (BWR/6) at nominal operating conditions is presented in this paper. The BWR/6 is produced by General Electric USA. The analysis' goal is to keep the thermal safety margin under control and the core integrity intact under steady-state operating conditions. The effects of operating conditions such as power distribution, power level, and coolant mass flow rate on the pro- posed core's performance are investigated. For this purpose, the one-dimensional computer code MITH was used. The code's reliability was tested using the General Electric benchmark 3579 MW reactor. Two-channel models were tested (the average and the hot channel). Ther- mal-hydraulic parameters such as fuel-centerline, fuel-surface, outer clad surface and coolant temperature, critical and actual local heat flux, critical and minimum critical heat flux ratio and pressure drop are evaluated along the tested channels. Temperatures, as well as actual and critical heat flux distribution profiles, were obtained. The tested operating conditions had a significant influence on these parameters, and also on the thermal-hydraulic performance. The obtained results are in good agreement with the data from the tested core. The obtained results are well within the safety margins. The good agreement between tested reactor data and MITH code calculation concerning the reactor demonstrates the reliability of the analysis methodology from a thermal-hydraulic perspective.","PeriodicalId":49734,"journal":{"name":"Nuclear Technology & Radiation Protection","volume":"290 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal-hydraulic analysis of light water reactors under different steady-state operating conditions, Part 1: Boiling water reactor\",\"authors\":\"E. Hutli, Ramadan Kridan\",\"doi\":\"10.2298/ntrp2204259h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The steady-state thermal-hydraulic analysis of the core of the Boiling Water Reactor (BWR/6) at nominal operating conditions is presented in this paper. The BWR/6 is produced by General Electric USA. The analysis' goal is to keep the thermal safety margin under control and the core integrity intact under steady-state operating conditions. The effects of operating conditions such as power distribution, power level, and coolant mass flow rate on the pro- posed core's performance are investigated. For this purpose, the one-dimensional computer code MITH was used. The code's reliability was tested using the General Electric benchmark 3579 MW reactor. Two-channel models were tested (the average and the hot channel). Ther- mal-hydraulic parameters such as fuel-centerline, fuel-surface, outer clad surface and coolant temperature, critical and actual local heat flux, critical and minimum critical heat flux ratio and pressure drop are evaluated along the tested channels. Temperatures, as well as actual and critical heat flux distribution profiles, were obtained. The tested operating conditions had a significant influence on these parameters, and also on the thermal-hydraulic performance. The obtained results are in good agreement with the data from the tested core. The obtained results are well within the safety margins. The good agreement between tested reactor data and MITH code calculation concerning the reactor demonstrates the reliability of the analysis methodology from a thermal-hydraulic perspective.\",\"PeriodicalId\":49734,\"journal\":{\"name\":\"Nuclear Technology & Radiation Protection\",\"volume\":\"290 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Technology & Radiation Protection\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/ntrp2204259h\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Technology & Radiation Protection","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ntrp2204259h","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文对沸水堆(BWR/6)堆芯在标称工况下的稳态热水力分析进行了研究。BWR/6由美国通用电气公司生产。分析的目标是在稳定运行条件下保持热安全裕度在可控范围内,并保持堆芯的完整性。研究了功率分配、功率等级、冷却剂质量流量等工况对设计堆芯性能的影响。为此,使用了一维计算机代码MITH。该代码的可靠性使用通用电气基准3579兆瓦反应堆进行了测试。测试了双通道模型(平均通道和热通道)。沿试验通道评估了燃料中心线、燃料表面、外包层表面和冷却剂温度、临界和实际局部热流密度、临界和最小临界热流密度比和压降等非稳态水力参数。得到了温度、实际热流密度和临界热流密度分布曲线。试验工况对这些参数有显著影响,对热工性能也有显著影响。所得结果与实测岩心数据吻合较好。所得结果完全在安全范围内。试验反应堆数据与MITH规范计算结果吻合较好,从热工角度证明了分析方法的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal-hydraulic analysis of light water reactors under different steady-state operating conditions, Part 1: Boiling water reactor
The steady-state thermal-hydraulic analysis of the core of the Boiling Water Reactor (BWR/6) at nominal operating conditions is presented in this paper. The BWR/6 is produced by General Electric USA. The analysis' goal is to keep the thermal safety margin under control and the core integrity intact under steady-state operating conditions. The effects of operating conditions such as power distribution, power level, and coolant mass flow rate on the pro- posed core's performance are investigated. For this purpose, the one-dimensional computer code MITH was used. The code's reliability was tested using the General Electric benchmark 3579 MW reactor. Two-channel models were tested (the average and the hot channel). Ther- mal-hydraulic parameters such as fuel-centerline, fuel-surface, outer clad surface and coolant temperature, critical and actual local heat flux, critical and minimum critical heat flux ratio and pressure drop are evaluated along the tested channels. Temperatures, as well as actual and critical heat flux distribution profiles, were obtained. The tested operating conditions had a significant influence on these parameters, and also on the thermal-hydraulic performance. The obtained results are in good agreement with the data from the tested core. The obtained results are well within the safety margins. The good agreement between tested reactor data and MITH code calculation concerning the reactor demonstrates the reliability of the analysis methodology from a thermal-hydraulic perspective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Technology & Radiation Protection
Nuclear Technology & Radiation Protection NUCLEAR SCIENCE & TECHNOLOGY-
CiteScore
2.00
自引率
41.70%
发文量
10
审稿时长
6-12 weeks
期刊介绍: Nuclear Technology & Radiation Protection is an international scientific journal covering the wide range of disciplines involved in nuclear science and technology as well as in the field of radiation protection. The journal is open for scientific papers, short papers, review articles, and technical papers dealing with nuclear power, research reactors, accelerators, nuclear materials, waste management, radiation measurements, and environmental problems. However, basic reactor physics and design, particle and radiation transport theory, and development of numerical methods and codes will also be important aspects of the editorial policy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信