N. Obajdin, Djeni Smilovic-Radojcic, David Rajlić, Manda Švabić-Kolacio, S. Jurković
{"title":"严格的耐受标准对非均匀介质吸收剂量分布验证和评价的影响","authors":"N. Obajdin, Djeni Smilovic-Radojcic, David Rajlić, Manda Švabić-Kolacio, S. Jurković","doi":"10.2298/ntrp2202138o","DOIUrl":null,"url":null,"abstract":"Advances of radiation delivery devices have increased the complexity of the radiation oncology treatments. Herewith, outcome of the treatment, as well as patient safety, strongly depend on the consistency of absorbed dose delivery. Both can be ensured by comprehensive system of verification of calculated absorbed dose distributions. Standard method is evaluation of calculated absorbed dose distribution according to gamma method, using a 2-D detector and a homogeneous phantom, to obtain measured dose distribution. Purpose of this research was to investigate the influence of tolerance criteria on gamma passing rate. Additionally, the agreement in heterogeneous phantom was analysed. Absorbed dose calculations were performed using systems Monaco and XiO. Detector with 1020 ionization chambers in homogeneous phantom and semi-anthropomorphic phantom was used for measurements. Absorbed dose distributions of around 3500 patients were analysed using gamma method. In homogeneous phantom, average gamma passing rates were within tolerance for 3 %/2 mm. For measurements in heterogeneous media, the highest average gamma passing rate was obtained for small volumes of medium treatment complexity (??=93.84%), while large volumes of treatment with low complexity yielded the lowest gamma passing rates (??= 83.22%).","PeriodicalId":49734,"journal":{"name":"Nuclear Technology & Radiation Protection","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of stringent tolerance criteria on verification of absorbed dose distributions and evaluation through inhomogeneous media\",\"authors\":\"N. Obajdin, Djeni Smilovic-Radojcic, David Rajlić, Manda Švabić-Kolacio, S. Jurković\",\"doi\":\"10.2298/ntrp2202138o\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances of radiation delivery devices have increased the complexity of the radiation oncology treatments. Herewith, outcome of the treatment, as well as patient safety, strongly depend on the consistency of absorbed dose delivery. Both can be ensured by comprehensive system of verification of calculated absorbed dose distributions. Standard method is evaluation of calculated absorbed dose distribution according to gamma method, using a 2-D detector and a homogeneous phantom, to obtain measured dose distribution. Purpose of this research was to investigate the influence of tolerance criteria on gamma passing rate. Additionally, the agreement in heterogeneous phantom was analysed. Absorbed dose calculations were performed using systems Monaco and XiO. Detector with 1020 ionization chambers in homogeneous phantom and semi-anthropomorphic phantom was used for measurements. Absorbed dose distributions of around 3500 patients were analysed using gamma method. In homogeneous phantom, average gamma passing rates were within tolerance for 3 %/2 mm. For measurements in heterogeneous media, the highest average gamma passing rate was obtained for small volumes of medium treatment complexity (??=93.84%), while large volumes of treatment with low complexity yielded the lowest gamma passing rates (??= 83.22%).\",\"PeriodicalId\":49734,\"journal\":{\"name\":\"Nuclear Technology & Radiation Protection\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Technology & Radiation Protection\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/ntrp2202138o\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Technology & Radiation Protection","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ntrp2202138o","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Impact of stringent tolerance criteria on verification of absorbed dose distributions and evaluation through inhomogeneous media
Advances of radiation delivery devices have increased the complexity of the radiation oncology treatments. Herewith, outcome of the treatment, as well as patient safety, strongly depend on the consistency of absorbed dose delivery. Both can be ensured by comprehensive system of verification of calculated absorbed dose distributions. Standard method is evaluation of calculated absorbed dose distribution according to gamma method, using a 2-D detector and a homogeneous phantom, to obtain measured dose distribution. Purpose of this research was to investigate the influence of tolerance criteria on gamma passing rate. Additionally, the agreement in heterogeneous phantom was analysed. Absorbed dose calculations were performed using systems Monaco and XiO. Detector with 1020 ionization chambers in homogeneous phantom and semi-anthropomorphic phantom was used for measurements. Absorbed dose distributions of around 3500 patients were analysed using gamma method. In homogeneous phantom, average gamma passing rates were within tolerance for 3 %/2 mm. For measurements in heterogeneous media, the highest average gamma passing rate was obtained for small volumes of medium treatment complexity (??=93.84%), while large volumes of treatment with low complexity yielded the lowest gamma passing rates (??= 83.22%).
期刊介绍:
Nuclear Technology & Radiation Protection is an international scientific journal covering the wide range of disciplines involved in nuclear science and technology as well as in the field of radiation protection. The journal is open for scientific papers, short papers, review articles, and technical papers dealing with nuclear power, research reactors, accelerators, nuclear materials, waste management, radiation measurements, and environmental problems. However, basic reactor physics and design, particle and radiation transport theory, and development of numerical methods and codes will also be important aspects of the editorial policy.