{"title":"基于c臂x射线装置集成的半自动定位保护屏","authors":"M. Antić","doi":"10.2298/ntrp201210002a","DOIUrl":null,"url":null,"abstract":"In fluoroscopy guided interventional procedures, ceiling suspended screen is used to protect personel for scattered X-ray radiation arising from patents. The correct positioning of the screen is crucial for proper occupational radiation protection. The proposed solution in this paper provides reliable and efficient protection from scattered radiation, based on X-ray device and the protective screen merging into one system via an appropriate interface. After the initial manual positioning, automatic repositioning of the screen is ?xecuted, by curving the screen laterally, clockwise or counterclockwise, and then with the upper or lower edge forward. All potential clinical situations were analyzed, considering need for screen position correction: the semi-automatic solution is designed and realized to follow the medical procedure in order to keep the efficient level of staff radiation protection. Furthermore, the assessment of the occupational radiation dose, provided for screen position optimization, will be imported in the radiation dose structural report. With application of the universal interface, the presented solution can be applied not only on newly manufactured ones, but on existing C-arm X-ray devices as well.","PeriodicalId":49734,"journal":{"name":"Nuclear Technology & Radiation Protection","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Semi - automatic positioning of the protective screen based on integration with C-arm X-ray device\",\"authors\":\"M. Antić\",\"doi\":\"10.2298/ntrp201210002a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In fluoroscopy guided interventional procedures, ceiling suspended screen is used to protect personel for scattered X-ray radiation arising from patents. The correct positioning of the screen is crucial for proper occupational radiation protection. The proposed solution in this paper provides reliable and efficient protection from scattered radiation, based on X-ray device and the protective screen merging into one system via an appropriate interface. After the initial manual positioning, automatic repositioning of the screen is ?xecuted, by curving the screen laterally, clockwise or counterclockwise, and then with the upper or lower edge forward. All potential clinical situations were analyzed, considering need for screen position correction: the semi-automatic solution is designed and realized to follow the medical procedure in order to keep the efficient level of staff radiation protection. Furthermore, the assessment of the occupational radiation dose, provided for screen position optimization, will be imported in the radiation dose structural report. With application of the universal interface, the presented solution can be applied not only on newly manufactured ones, but on existing C-arm X-ray devices as well.\",\"PeriodicalId\":49734,\"journal\":{\"name\":\"Nuclear Technology & Radiation Protection\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Technology & Radiation Protection\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/ntrp201210002a\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Technology & Radiation Protection","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ntrp201210002a","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Semi - automatic positioning of the protective screen based on integration with C-arm X-ray device
In fluoroscopy guided interventional procedures, ceiling suspended screen is used to protect personel for scattered X-ray radiation arising from patents. The correct positioning of the screen is crucial for proper occupational radiation protection. The proposed solution in this paper provides reliable and efficient protection from scattered radiation, based on X-ray device and the protective screen merging into one system via an appropriate interface. After the initial manual positioning, automatic repositioning of the screen is ?xecuted, by curving the screen laterally, clockwise or counterclockwise, and then with the upper or lower edge forward. All potential clinical situations were analyzed, considering need for screen position correction: the semi-automatic solution is designed and realized to follow the medical procedure in order to keep the efficient level of staff radiation protection. Furthermore, the assessment of the occupational radiation dose, provided for screen position optimization, will be imported in the radiation dose structural report. With application of the universal interface, the presented solution can be applied not only on newly manufactured ones, but on existing C-arm X-ray devices as well.
期刊介绍:
Nuclear Technology & Radiation Protection is an international scientific journal covering the wide range of disciplines involved in nuclear science and technology as well as in the field of radiation protection. The journal is open for scientific papers, short papers, review articles, and technical papers dealing with nuclear power, research reactors, accelerators, nuclear materials, waste management, radiation measurements, and environmental problems. However, basic reactor physics and design, particle and radiation transport theory, and development of numerical methods and codes will also be important aspects of the editorial policy.