在外部光子放射治疗期间,用驻极体离子室测量治疗体积外的吸收剂量

IF 0.9 4区 工程技术 Q3 NUCLEAR SCIENCE & TECHNOLOGY
A. Clouvas, A. Makridou, M. Chatzimarkou
{"title":"在外部光子放射治疗期间,用驻极体离子室测量治疗体积外的吸收剂量","authors":"A. Clouvas, A. Makridou, M. Chatzimarkou","doi":"10.2298/ntrp201113015c","DOIUrl":null,"url":null,"abstract":"The capabilities of electret ion chambers to measure non-target absorbed dose for distances greater than 20 cm from the irradiated volume during radiotherapy treatment was investigated for the first time. During radiotherapy, nontarget doses can be classified as one of three approximate dose levels: high doses, intermediate doses and low doses. Low doses (<5 % of the prescription dose) are not generally considered during treatment planning, due to the fact that is difficult to measure, characterize, or model them in the planning system. In this work were performed measurements with electret ion chambers of absorbed dose outside the treated volume (<5 % of the prescription dose), during external photon radiation therapy in an Elekta Infinity Linear Accelerator of ?Theagenio? Cancer Hospital of Thessaloniki, Greece. The absorbed dose values for distances greater than 20 cm from the irradiated volume varied from 0.3 to 17 mGy which corresponds to 0.01% up to 0.6% of the prescription dose (2660 mGy). Near the irradiation volume the absorbed dose values were greater than the upper detection limit of the electret ion chambers (threshold 40 mGy). The results are compared with the calculated ones by the Monaco Treatment Planning System (Elekta Monaco 5.11.03). In the non-target radiation region where Monaco Treatment Planning System calculates rather precisely (within uncertainties of less than 10%) the absorbed dose, measured and calculated doses are the same within experimental uncertainties. On the contrary, when leakage radiation becomes the dominant source of out-of-field dose the differences are up to 31%.","PeriodicalId":49734,"journal":{"name":"Nuclear Technology & Radiation Protection","volume":"120 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement with electret ion chambers of absorbed dose outside the treated volume, during external-photon radiation therapy\",\"authors\":\"A. Clouvas, A. Makridou, M. Chatzimarkou\",\"doi\":\"10.2298/ntrp201113015c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The capabilities of electret ion chambers to measure non-target absorbed dose for distances greater than 20 cm from the irradiated volume during radiotherapy treatment was investigated for the first time. During radiotherapy, nontarget doses can be classified as one of three approximate dose levels: high doses, intermediate doses and low doses. Low doses (<5 % of the prescription dose) are not generally considered during treatment planning, due to the fact that is difficult to measure, characterize, or model them in the planning system. In this work were performed measurements with electret ion chambers of absorbed dose outside the treated volume (<5 % of the prescription dose), during external photon radiation therapy in an Elekta Infinity Linear Accelerator of ?Theagenio? Cancer Hospital of Thessaloniki, Greece. The absorbed dose values for distances greater than 20 cm from the irradiated volume varied from 0.3 to 17 mGy which corresponds to 0.01% up to 0.6% of the prescription dose (2660 mGy). Near the irradiation volume the absorbed dose values were greater than the upper detection limit of the electret ion chambers (threshold 40 mGy). The results are compared with the calculated ones by the Monaco Treatment Planning System (Elekta Monaco 5.11.03). In the non-target radiation region where Monaco Treatment Planning System calculates rather precisely (within uncertainties of less than 10%) the absorbed dose, measured and calculated doses are the same within experimental uncertainties. On the contrary, when leakage radiation becomes the dominant source of out-of-field dose the differences are up to 31%.\",\"PeriodicalId\":49734,\"journal\":{\"name\":\"Nuclear Technology & Radiation Protection\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Technology & Radiation Protection\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/ntrp201113015c\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Technology & Radiation Protection","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ntrp201113015c","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在放射治疗过程中,首次研究了驻极体离子室测量距离辐照体大于20 cm的非靶吸收剂量的能力。在放射治疗期间,非靶剂量可分为三种近似剂量水平之一:高剂量、中等剂量和低剂量。低剂量(<处方剂量的5%)在治疗计划中通常不被考虑,因为在计划系统中难以测量、表征或建模。在这项工作中,用驻极体离子室测量了治疗体积外的吸收剂量(<处方剂量的5%),在外部光子放射治疗期间,在Elekta无限线性加速器?塞萨洛尼基癌症医院,希腊。距离辐照体积大于20厘米的吸收剂量值从0.3至17毫戈瑞不等,相当于处方剂量(2660毫戈瑞)的0.01%至0.6%。在辐照体积附近,吸收剂量值大于驻极体离子室的检测上限(阈值40 mGy)。结果与摩纳哥治疗计划系统(Elekta Monaco 5.11.03)的计算结果进行了比较。在摩纳哥治疗计划系统相当精确地计算吸收剂量(不确定度小于10%)的非靶辐射区域,在实验不确定度范围内,测量剂量和计算剂量是相同的。相反,当泄漏辐射成为场外剂量的主要来源时,差异可达31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement with electret ion chambers of absorbed dose outside the treated volume, during external-photon radiation therapy
The capabilities of electret ion chambers to measure non-target absorbed dose for distances greater than 20 cm from the irradiated volume during radiotherapy treatment was investigated for the first time. During radiotherapy, nontarget doses can be classified as one of three approximate dose levels: high doses, intermediate doses and low doses. Low doses (<5 % of the prescription dose) are not generally considered during treatment planning, due to the fact that is difficult to measure, characterize, or model them in the planning system. In this work were performed measurements with electret ion chambers of absorbed dose outside the treated volume (<5 % of the prescription dose), during external photon radiation therapy in an Elekta Infinity Linear Accelerator of ?Theagenio? Cancer Hospital of Thessaloniki, Greece. The absorbed dose values for distances greater than 20 cm from the irradiated volume varied from 0.3 to 17 mGy which corresponds to 0.01% up to 0.6% of the prescription dose (2660 mGy). Near the irradiation volume the absorbed dose values were greater than the upper detection limit of the electret ion chambers (threshold 40 mGy). The results are compared with the calculated ones by the Monaco Treatment Planning System (Elekta Monaco 5.11.03). In the non-target radiation region where Monaco Treatment Planning System calculates rather precisely (within uncertainties of less than 10%) the absorbed dose, measured and calculated doses are the same within experimental uncertainties. On the contrary, when leakage radiation becomes the dominant source of out-of-field dose the differences are up to 31%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Technology & Radiation Protection
Nuclear Technology & Radiation Protection NUCLEAR SCIENCE & TECHNOLOGY-
CiteScore
2.00
自引率
41.70%
发文量
10
审稿时长
6-12 weeks
期刊介绍: Nuclear Technology & Radiation Protection is an international scientific journal covering the wide range of disciplines involved in nuclear science and technology as well as in the field of radiation protection. The journal is open for scientific papers, short papers, review articles, and technical papers dealing with nuclear power, research reactors, accelerators, nuclear materials, waste management, radiation measurements, and environmental problems. However, basic reactor physics and design, particle and radiation transport theory, and development of numerical methods and codes will also be important aspects of the editorial policy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信