{"title":"遗传网络简化s系统模型的一种有效推理方法","authors":"Shuhei Kimura, Masanao Sato, M. Okada‐Hatakeyama","doi":"10.2197/IPSJTBIO.7.30","DOIUrl":null,"url":null,"abstract":"The inference of genetic networks is a problem to obtain mathematical models that can explain observed time-series of gene expression levels. A number of models have been proposed to describe genetic networks. The S-system model is one of the most studied models among them. Due to its advantageous features, numerous inference algorithms based on the S-system model have been proposed. The number of the parameters in the S-system model is however larger than those of the other well-studied models. Therefore, when trying to infer S-system models of genetic networks, we need to provide a larger amount of gene expression data to the inference method. In order to reduce the amount of gene expression data required for an inference of genetic networks, this study simplifies the S-system model by fixing some of its parameters to 0. In this study, we call this simplified S-system model a reduced S-system model. We then propose a new inference method that estimates the parameters of the reduced S-system model by minimizing two-dimensional functions. Finally, we check the effectiveness of the proposed method through numerical experiments on artificial and actual genetic network inference problems.","PeriodicalId":38959,"journal":{"name":"IPSJ Transactions on Bioinformatics","volume":"7 1","pages":"30-38"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2197/IPSJTBIO.7.30","citationCount":"5","resultStr":"{\"title\":\"An Effective Method for the Inference of Reduced S-system Models of Genetic Networks\",\"authors\":\"Shuhei Kimura, Masanao Sato, M. Okada‐Hatakeyama\",\"doi\":\"10.2197/IPSJTBIO.7.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inference of genetic networks is a problem to obtain mathematical models that can explain observed time-series of gene expression levels. A number of models have been proposed to describe genetic networks. The S-system model is one of the most studied models among them. Due to its advantageous features, numerous inference algorithms based on the S-system model have been proposed. The number of the parameters in the S-system model is however larger than those of the other well-studied models. Therefore, when trying to infer S-system models of genetic networks, we need to provide a larger amount of gene expression data to the inference method. In order to reduce the amount of gene expression data required for an inference of genetic networks, this study simplifies the S-system model by fixing some of its parameters to 0. In this study, we call this simplified S-system model a reduced S-system model. We then propose a new inference method that estimates the parameters of the reduced S-system model by minimizing two-dimensional functions. Finally, we check the effectiveness of the proposed method through numerical experiments on artificial and actual genetic network inference problems.\",\"PeriodicalId\":38959,\"journal\":{\"name\":\"IPSJ Transactions on Bioinformatics\",\"volume\":\"7 1\",\"pages\":\"30-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2197/IPSJTBIO.7.30\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/IPSJTBIO.7.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJTBIO.7.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
An Effective Method for the Inference of Reduced S-system Models of Genetic Networks
The inference of genetic networks is a problem to obtain mathematical models that can explain observed time-series of gene expression levels. A number of models have been proposed to describe genetic networks. The S-system model is one of the most studied models among them. Due to its advantageous features, numerous inference algorithms based on the S-system model have been proposed. The number of the parameters in the S-system model is however larger than those of the other well-studied models. Therefore, when trying to infer S-system models of genetic networks, we need to provide a larger amount of gene expression data to the inference method. In order to reduce the amount of gene expression data required for an inference of genetic networks, this study simplifies the S-system model by fixing some of its parameters to 0. In this study, we call this simplified S-system model a reduced S-system model. We then propose a new inference method that estimates the parameters of the reduced S-system model by minimizing two-dimensional functions. Finally, we check the effectiveness of the proposed method through numerical experiments on artificial and actual genetic network inference problems.