从生物医学文献中识别药物靶点的一种新的评价方法

Q3 Biochemistry, Genetics and Molecular Biology
Yeondae Kwon, Shogo Shimizu, H. Sugawara, S. Miyazaki
{"title":"从生物医学文献中识别药物靶点的一种新的评价方法","authors":"Yeondae Kwon, Shogo Shimizu, H. Sugawara, S. Miyazaki","doi":"10.2197/IPSJTBIO.7.16","DOIUrl":null,"url":null,"abstract":"Identification of candidate target genes related to a particular disease is an important stage in drug development. A number of studies have extracted disease-related genes from the biomedical literature. We herein present a novel evaluation measure that identifies disease-associated genes and prioritizes the identified genes as drug target genes in terms of fewer side-effects using the biomedical literature. The proposed measure evaluates the specificity of a gene to a particular disease based on the number of diseases associated with the gene. The specificity of a gene is measured by means of, for example, term frequency-inverse document frequency (tf-idf), which is widely used in Web information retrieval. We assume that if a gene is chosen as a target gene for a disease, then side-effects are more likely to occur as the number of diseases associated with the gene increases. We verified the obtained ranking results by checking the ranks of known drug targets. As a result, 177 known drug targets were found to be ranked within the top 100 genes, and 21 drug targets were top ranked. The results suggest that the proposed measure is useful as a primary filter for extracting candidate target genes from a large number of genes.","PeriodicalId":38959,"journal":{"name":"IPSJ Transactions on Bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2197/IPSJTBIO.7.16","citationCount":"3","resultStr":"{\"title\":\"A novel evaluation measure for identifying drug targets from the biomedical literature\",\"authors\":\"Yeondae Kwon, Shogo Shimizu, H. Sugawara, S. Miyazaki\",\"doi\":\"10.2197/IPSJTBIO.7.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identification of candidate target genes related to a particular disease is an important stage in drug development. A number of studies have extracted disease-related genes from the biomedical literature. We herein present a novel evaluation measure that identifies disease-associated genes and prioritizes the identified genes as drug target genes in terms of fewer side-effects using the biomedical literature. The proposed measure evaluates the specificity of a gene to a particular disease based on the number of diseases associated with the gene. The specificity of a gene is measured by means of, for example, term frequency-inverse document frequency (tf-idf), which is widely used in Web information retrieval. We assume that if a gene is chosen as a target gene for a disease, then side-effects are more likely to occur as the number of diseases associated with the gene increases. We verified the obtained ranking results by checking the ranks of known drug targets. As a result, 177 known drug targets were found to be ranked within the top 100 genes, and 21 drug targets were top ranked. The results suggest that the proposed measure is useful as a primary filter for extracting candidate target genes from a large number of genes.\",\"PeriodicalId\":38959,\"journal\":{\"name\":\"IPSJ Transactions on Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2197/IPSJTBIO.7.16\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/IPSJTBIO.7.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJTBIO.7.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 3

摘要

与特定疾病相关的候选靶基因的鉴定是药物开发的重要阶段。许多研究从生物医学文献中提取了与疾病相关的基因。我们在此提出了一种新的评估方法,可以识别疾病相关基因,并根据生物医学文献的副作用较少,将识别的基因优先作为药物靶基因。所提出的测量方法基于与该基因相关的疾病数量来评估基因对特定疾病的特异性。基因的特异性是通过术语频率逆文档频率(tf-idf)等方法来测量的,该方法广泛用于Web信息检索。我们假设,如果一个基因被选为某种疾病的靶基因,那么随着与该基因相关的疾病数量的增加,副作用就更有可能发生。我们通过对已知药物靶点的排序来验证得到的排序结果。结果发现,在前100个基因中有177个已知药物靶点,其中21个药物靶点排名靠前。结果表明,该方法可作为从大量基因中提取候选靶基因的初级过滤器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel evaluation measure for identifying drug targets from the biomedical literature
Identification of candidate target genes related to a particular disease is an important stage in drug development. A number of studies have extracted disease-related genes from the biomedical literature. We herein present a novel evaluation measure that identifies disease-associated genes and prioritizes the identified genes as drug target genes in terms of fewer side-effects using the biomedical literature. The proposed measure evaluates the specificity of a gene to a particular disease based on the number of diseases associated with the gene. The specificity of a gene is measured by means of, for example, term frequency-inverse document frequency (tf-idf), which is widely used in Web information retrieval. We assume that if a gene is chosen as a target gene for a disease, then side-effects are more likely to occur as the number of diseases associated with the gene increases. We verified the obtained ranking results by checking the ranks of known drug targets. As a result, 177 known drug targets were found to be ranked within the top 100 genes, and 21 drug targets were top ranked. The results suggest that the proposed measure is useful as a primary filter for extracting candidate target genes from a large number of genes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IPSJ Transactions on Bioinformatics
IPSJ Transactions on Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
1.90
自引率
0.00%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信