多重转基因组合优化问题的线性与非线性回归

Q3 Biochemistry, Genetics and Molecular Biology
D. Tominaga, Kazuki Mori, S. Aburatani
{"title":"多重转基因组合优化问题的线性与非线性回归","authors":"D. Tominaga, Kazuki Mori, S. Aburatani","doi":"10.2197/IPSJTBIO.9.7","DOIUrl":null,"url":null,"abstract":"Combinatorial optimization problem is a difficult class of problems from which to obtain exact solutions, but such problems often arise in biotechnology, for example, it is often necessary to find optimal combinations of genes in transgenics to improve production of a useful compound by microorganisms. In the cases of 20 candidate genes for introduction into cells, the number of possible combinations of introduced genes is approximately 106. Testing all of their combinations by experimental observation is impossible practically. A few combinations are observed experimentally for large numbers of possible combinations generally. We tested two methods for the prediction of effects of transgenes: multivariate linear regression and the RBF (Radial Basis Function) network, with a simulated and an unpublished experimentally observed dataset of transgenic yeast. Results show that RBF network can detect a special gene (introduced gene) at the five percent significance level when the gene causes production values that are 1.5 times greater than other genes for the simulated dataset. Prediction by RBF network causes over-learning for larger numbers of learning data, however, it is superior than that by the linear regression model at the best condition.","PeriodicalId":38959,"journal":{"name":"IPSJ Transactions on Bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2197/IPSJTBIO.9.7","citationCount":"2","resultStr":"{\"title\":\"Linear and Nonlinear Regression for Combinatorial Optimization Problem of Multiple Transgenesis\",\"authors\":\"D. Tominaga, Kazuki Mori, S. Aburatani\",\"doi\":\"10.2197/IPSJTBIO.9.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combinatorial optimization problem is a difficult class of problems from which to obtain exact solutions, but such problems often arise in biotechnology, for example, it is often necessary to find optimal combinations of genes in transgenics to improve production of a useful compound by microorganisms. In the cases of 20 candidate genes for introduction into cells, the number of possible combinations of introduced genes is approximately 106. Testing all of their combinations by experimental observation is impossible practically. A few combinations are observed experimentally for large numbers of possible combinations generally. We tested two methods for the prediction of effects of transgenes: multivariate linear regression and the RBF (Radial Basis Function) network, with a simulated and an unpublished experimentally observed dataset of transgenic yeast. Results show that RBF network can detect a special gene (introduced gene) at the five percent significance level when the gene causes production values that are 1.5 times greater than other genes for the simulated dataset. Prediction by RBF network causes over-learning for larger numbers of learning data, however, it is superior than that by the linear regression model at the best condition.\",\"PeriodicalId\":38959,\"journal\":{\"name\":\"IPSJ Transactions on Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2197/IPSJTBIO.9.7\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/IPSJTBIO.9.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJTBIO.9.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2

摘要

组合优化问题是一类很难得到精确解的问题,但这类问题经常出现在生物技术中,例如,在转基因中经常需要找到基因的最佳组合来提高微生物有用化合物的产量。在将20个候选基因引入细胞的情况下,引入基因的可能组合数量约为106。实际上,用实验观察来检验它们的所有组合是不可能的。一般来说,对于大量可能的组合,只有少数几种组合在实验中被观察到。我们测试了两种预测转基因效应的方法:多元线性回归和RBF(径向基函数)网络,分别使用模拟的和未发表的转基因酵母实验观察数据集。结果表明,RBF网络可以在5%的显著性水平上检测到特定基因(引入基因),当该基因对模拟数据集的生产价值比其他基因高1.5倍时。对于大量的学习数据,RBF网络的预测会导致过度学习,但在最佳条件下优于线性回归模型的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear and Nonlinear Regression for Combinatorial Optimization Problem of Multiple Transgenesis
Combinatorial optimization problem is a difficult class of problems from which to obtain exact solutions, but such problems often arise in biotechnology, for example, it is often necessary to find optimal combinations of genes in transgenics to improve production of a useful compound by microorganisms. In the cases of 20 candidate genes for introduction into cells, the number of possible combinations of introduced genes is approximately 106. Testing all of their combinations by experimental observation is impossible practically. A few combinations are observed experimentally for large numbers of possible combinations generally. We tested two methods for the prediction of effects of transgenes: multivariate linear regression and the RBF (Radial Basis Function) network, with a simulated and an unpublished experimentally observed dataset of transgenic yeast. Results show that RBF network can detect a special gene (introduced gene) at the five percent significance level when the gene causes production values that are 1.5 times greater than other genes for the simulated dataset. Prediction by RBF network causes over-learning for larger numbers of learning data, however, it is superior than that by the linear regression model at the best condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IPSJ Transactions on Bioinformatics
IPSJ Transactions on Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
1.90
自引率
0.00%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信