{"title":"化合物亚结构变化与代谢途径比对的反应相似性","authors":"Y. Tohsato, Yuki Nishimura","doi":"10.2197/IPSJTBIO.2.15","DOIUrl":null,"url":null,"abstract":"Comparative analyses of enzymatic reactions provide important information on both evolution and potential pharmacological targets. Previously, we focused on the structural formulae of compounds, and proposed a method to calculate enzymatic similarities based on these formulae. However, with the proposed method it is difficult to measure the reaction similarity when the formulae of the compounds constituting each reaction are completely different. The present study was performed to extract substructures that change within chemical compounds using the RPAIR data in KEGG. Two approaches were applied to measure the similarity between the extracted substructures: a fingerprint-based approach using the MACCS key and the Tanimoto/Jaccard coefficients; and the Topological Fragment Spectra-based approach that does not require any predefined list of substructures. Whether the similarity measures can detect similarity between enzymatic reactions was evaluated. Using one of the similarity measures, metabolic pathways in Escherichia coli were aligned to confirm the effectiveness of the method.","PeriodicalId":38959,"journal":{"name":"IPSJ Transactions on Bioinformatics","volume":"7 1","pages":"15-24"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2197/IPSJTBIO.2.15","citationCount":"4","resultStr":"{\"title\":\"Reaction Similarities Focusing Substructure Changes of Chemical Compounds and Metabolic Pathway Alignments\",\"authors\":\"Y. Tohsato, Yuki Nishimura\",\"doi\":\"10.2197/IPSJTBIO.2.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Comparative analyses of enzymatic reactions provide important information on both evolution and potential pharmacological targets. Previously, we focused on the structural formulae of compounds, and proposed a method to calculate enzymatic similarities based on these formulae. However, with the proposed method it is difficult to measure the reaction similarity when the formulae of the compounds constituting each reaction are completely different. The present study was performed to extract substructures that change within chemical compounds using the RPAIR data in KEGG. Two approaches were applied to measure the similarity between the extracted substructures: a fingerprint-based approach using the MACCS key and the Tanimoto/Jaccard coefficients; and the Topological Fragment Spectra-based approach that does not require any predefined list of substructures. Whether the similarity measures can detect similarity between enzymatic reactions was evaluated. Using one of the similarity measures, metabolic pathways in Escherichia coli were aligned to confirm the effectiveness of the method.\",\"PeriodicalId\":38959,\"journal\":{\"name\":\"IPSJ Transactions on Bioinformatics\",\"volume\":\"7 1\",\"pages\":\"15-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2197/IPSJTBIO.2.15\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/IPSJTBIO.2.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJTBIO.2.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Reaction Similarities Focusing Substructure Changes of Chemical Compounds and Metabolic Pathway Alignments
Comparative analyses of enzymatic reactions provide important information on both evolution and potential pharmacological targets. Previously, we focused on the structural formulae of compounds, and proposed a method to calculate enzymatic similarities based on these formulae. However, with the proposed method it is difficult to measure the reaction similarity when the formulae of the compounds constituting each reaction are completely different. The present study was performed to extract substructures that change within chemical compounds using the RPAIR data in KEGG. Two approaches were applied to measure the similarity between the extracted substructures: a fingerprint-based approach using the MACCS key and the Tanimoto/Jaccard coefficients; and the Topological Fragment Spectra-based approach that does not require any predefined list of substructures. Whether the similarity measures can detect similarity between enzymatic reactions was evaluated. Using one of the similarity measures, metabolic pathways in Escherichia coli were aligned to confirm the effectiveness of the method.