{"title":"基因组识别器:微生物基因组系统发育分析的工具","authors":"Yukinari Shimoyama, Tokumasa Horiike","doi":"10.2197/IPSJTBIO.12.17","DOIUrl":null,"url":null,"abstract":": Bacterial whole-genome sequences have recently become widely available via innovative and rapid progress in technologies such as high-throughput sequencing and computing. Genomes of environmental microor-ganisms have also been sequenced, and their number is expected to increase in the future. Typically, phylogenetic analysis is performed after genome sequencing of such organisms. 16S rRNA is a standard locus for the phylogenetic analysis of prokaryotes. However, 16S rRNA phylogenetic trees are not always reliable because of out-paralogs and horizontal gene transfer. To overcome this problem, multiple genes (or proteins) should be employed. Therefore, we developed “Genome Identifier,” which can be used for constructing a concatenated phylogenetic tree in the form of a species tree by predicting genes from newly sequenced genomic data and collecting homologous sequences from other species.","PeriodicalId":38959,"journal":{"name":"IPSJ Transactions on Bioinformatics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2197/IPSJTBIO.12.17","citationCount":"2","resultStr":"{\"title\":\"Genome Identifier: A Tool for Phylogenetic Analysis of Microbial Genomes\",\"authors\":\"Yukinari Shimoyama, Tokumasa Horiike\",\"doi\":\"10.2197/IPSJTBIO.12.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Bacterial whole-genome sequences have recently become widely available via innovative and rapid progress in technologies such as high-throughput sequencing and computing. Genomes of environmental microor-ganisms have also been sequenced, and their number is expected to increase in the future. Typically, phylogenetic analysis is performed after genome sequencing of such organisms. 16S rRNA is a standard locus for the phylogenetic analysis of prokaryotes. However, 16S rRNA phylogenetic trees are not always reliable because of out-paralogs and horizontal gene transfer. To overcome this problem, multiple genes (or proteins) should be employed. Therefore, we developed “Genome Identifier,” which can be used for constructing a concatenated phylogenetic tree in the form of a species tree by predicting genes from newly sequenced genomic data and collecting homologous sequences from other species.\",\"PeriodicalId\":38959,\"journal\":{\"name\":\"IPSJ Transactions on Bioinformatics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2197/IPSJTBIO.12.17\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/IPSJTBIO.12.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJTBIO.12.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Genome Identifier: A Tool for Phylogenetic Analysis of Microbial Genomes
: Bacterial whole-genome sequences have recently become widely available via innovative and rapid progress in technologies such as high-throughput sequencing and computing. Genomes of environmental microor-ganisms have also been sequenced, and their number is expected to increase in the future. Typically, phylogenetic analysis is performed after genome sequencing of such organisms. 16S rRNA is a standard locus for the phylogenetic analysis of prokaryotes. However, 16S rRNA phylogenetic trees are not always reliable because of out-paralogs and horizontal gene transfer. To overcome this problem, multiple genes (or proteins) should be employed. Therefore, we developed “Genome Identifier,” which can be used for constructing a concatenated phylogenetic tree in the form of a species tree by predicting genes from newly sequenced genomic data and collecting homologous sequences from other species.