{"title":"秀丽隐杆线虫受精钙波数学模型的改进与评价","authors":"Momoko Imakubo, Jun Takayama, Shuichi Onami","doi":"10.2197/IPSJTBIO.11.24","DOIUrl":null,"url":null,"abstract":"Ca2+ waves propagate through the oocyte during fertilization, activate the oocyte and induce embryonic development. Ca2+-induced Ca2+-release (CICR) is a mechanism of Ca2+ wave formation. We previously quantified the Ca2+ waves in the nematode Caenorhabditis elegans by using high-speed imaging and image analysis. We found that the waves consist of a rapid local rise at the point of sperm entry and a slow global wave. We demonstrated that the Nagumo model, which models the CICR by a reaction–diffusion equation, can produce a similar biphasic waveform. However, the model cannot represent the observed gradual decrease in maximum Ca2+ concentration with increasing distance from the point of sperm entry. In this study, we introduced a linear monotonically decreasing function into the reaction part of the Nagumo model. We demonstrated that our new model can produce the gradual decrease in maximum Ca2+ concentration with increasing distance from the point of sperm entry and a biphasic waveform simultaneously.","PeriodicalId":38959,"journal":{"name":"IPSJ Transactions on Bioinformatics","volume":"11 1","pages":"24-30"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement and Evaluation of a Mathematical Model for Fertilization Calcium Waves in Caenorhabditis Elegans\",\"authors\":\"Momoko Imakubo, Jun Takayama, Shuichi Onami\",\"doi\":\"10.2197/IPSJTBIO.11.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ca2+ waves propagate through the oocyte during fertilization, activate the oocyte and induce embryonic development. Ca2+-induced Ca2+-release (CICR) is a mechanism of Ca2+ wave formation. We previously quantified the Ca2+ waves in the nematode Caenorhabditis elegans by using high-speed imaging and image analysis. We found that the waves consist of a rapid local rise at the point of sperm entry and a slow global wave. We demonstrated that the Nagumo model, which models the CICR by a reaction–diffusion equation, can produce a similar biphasic waveform. However, the model cannot represent the observed gradual decrease in maximum Ca2+ concentration with increasing distance from the point of sperm entry. In this study, we introduced a linear monotonically decreasing function into the reaction part of the Nagumo model. We demonstrated that our new model can produce the gradual decrease in maximum Ca2+ concentration with increasing distance from the point of sperm entry and a biphasic waveform simultaneously.\",\"PeriodicalId\":38959,\"journal\":{\"name\":\"IPSJ Transactions on Bioinformatics\",\"volume\":\"11 1\",\"pages\":\"24-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/IPSJTBIO.11.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJTBIO.11.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Improvement and Evaluation of a Mathematical Model for Fertilization Calcium Waves in Caenorhabditis Elegans
Ca2+ waves propagate through the oocyte during fertilization, activate the oocyte and induce embryonic development. Ca2+-induced Ca2+-release (CICR) is a mechanism of Ca2+ wave formation. We previously quantified the Ca2+ waves in the nematode Caenorhabditis elegans by using high-speed imaging and image analysis. We found that the waves consist of a rapid local rise at the point of sperm entry and a slow global wave. We demonstrated that the Nagumo model, which models the CICR by a reaction–diffusion equation, can produce a similar biphasic waveform. However, the model cannot represent the observed gradual decrease in maximum Ca2+ concentration with increasing distance from the point of sperm entry. In this study, we introduced a linear monotonically decreasing function into the reaction part of the Nagumo model. We demonstrated that our new model can produce the gradual decrease in maximum Ca2+ concentration with increasing distance from the point of sperm entry and a biphasic waveform simultaneously.