{"title":"利用SHT主题模型发现证药关系","authors":"Lidong Wang, Keyong Hu, Xiaodong Xu","doi":"10.2197/IPSJTBIO.10.16","DOIUrl":null,"url":null,"abstract":"TCM has been widely researched through various methods in computer science in past decades, but none digs into huge amount of clinical cases to discover the meaningful treatment patterns between symptoms and herbs. To meet the challenge, we explore the unstructured and intricate experiential data in clinical case, and propose a method to discover the treatment patterns by introducing a novel topic model named SHT (Symptom-Herb Topic model). Combinational rules are incorporated into the learning process. We evaluate our method on 3,765 TCM clinical cases. The experiment validates the effectiveness of our method compared with LDA model and LinkLDA model.","PeriodicalId":38959,"journal":{"name":"IPSJ Transactions on Bioinformatics","volume":"10 1","pages":"16-21"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2197/IPSJTBIO.10.16","citationCount":"1","resultStr":"{\"title\":\"Discovering Symptom-herb Relationship by Exploiting SHT Topic Model\",\"authors\":\"Lidong Wang, Keyong Hu, Xiaodong Xu\",\"doi\":\"10.2197/IPSJTBIO.10.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TCM has been widely researched through various methods in computer science in past decades, but none digs into huge amount of clinical cases to discover the meaningful treatment patterns between symptoms and herbs. To meet the challenge, we explore the unstructured and intricate experiential data in clinical case, and propose a method to discover the treatment patterns by introducing a novel topic model named SHT (Symptom-Herb Topic model). Combinational rules are incorporated into the learning process. We evaluate our method on 3,765 TCM clinical cases. The experiment validates the effectiveness of our method compared with LDA model and LinkLDA model.\",\"PeriodicalId\":38959,\"journal\":{\"name\":\"IPSJ Transactions on Bioinformatics\",\"volume\":\"10 1\",\"pages\":\"16-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2197/IPSJTBIO.10.16\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/IPSJTBIO.10.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJTBIO.10.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Discovering Symptom-herb Relationship by Exploiting SHT Topic Model
TCM has been widely researched through various methods in computer science in past decades, but none digs into huge amount of clinical cases to discover the meaningful treatment patterns between symptoms and herbs. To meet the challenge, we explore the unstructured and intricate experiential data in clinical case, and propose a method to discover the treatment patterns by introducing a novel topic model named SHT (Symptom-Herb Topic model). Combinational rules are incorporated into the learning process. We evaluate our method on 3,765 TCM clinical cases. The experiment validates the effectiveness of our method compared with LDA model and LinkLDA model.