比较受谐波搜索、布谷鸟搜索和蝙蝠搜索启发的多目标算法的可再生分布式发电位置

TecnoLogicas Pub Date : 2015-08-03 DOI:10.22430/22565337.192
John E. Candelo-Becerra, H. E. Hernández-Riaño, Alcides R. Santander-Mercado
{"title":"比较受谐波搜索、布谷鸟搜索和蝙蝠搜索启发的多目标算法的可再生分布式发电位置","authors":"John E. Candelo-Becerra, H. E. Hernández-Riaño, Alcides R. Santander-Mercado","doi":"10.22430/22565337.192","DOIUrl":null,"url":null,"abstract":"Electric power losses have a significant impact on the total costs of distribution networks. The use of renewable energy sources is a major alternative to improve power losses and costs, although other important issues are also enhanced such as voltage magnitudes and network congestion. However, determining the best location and size of renewable energy generators can be sometimes a challenging task due to a large number of possible combinations in the search space. Furthermore, the multiobjective functions increase the complexity of the problem and metaheuristics are preferred to find solutions in a relatively short time. This paper evaluates the performance of the cuckoo search (CS), harmony search (HS), and bat-inspired (BA) algorithms for the location and size of renewable distributed generation (RDG) in radial distribution networks using a multiobjective function defined as minimizing the energy losses and the RDG costs. The metaheuristic algorithms were programmed in Matlab and tested using the 33-node radial distribution network. The three algorithms obtained similar results for the two objectives evaluated, finding points close to the best solutions in the Pareto front. Comparisons showed that the CS obtained the minimum results for most points evaluated, but the BA and the HS were close to the best solution.","PeriodicalId":30469,"journal":{"name":"TecnoLogicas","volume":"18 1","pages":"105-116"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparación de algoritmos multiobjetivo inspirados en búsqueda armónica, búsqueda cuco y murciélagos para la ubicación de generación distribuida renovable\",\"authors\":\"John E. Candelo-Becerra, H. E. Hernández-Riaño, Alcides R. Santander-Mercado\",\"doi\":\"10.22430/22565337.192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electric power losses have a significant impact on the total costs of distribution networks. The use of renewable energy sources is a major alternative to improve power losses and costs, although other important issues are also enhanced such as voltage magnitudes and network congestion. However, determining the best location and size of renewable energy generators can be sometimes a challenging task due to a large number of possible combinations in the search space. Furthermore, the multiobjective functions increase the complexity of the problem and metaheuristics are preferred to find solutions in a relatively short time. This paper evaluates the performance of the cuckoo search (CS), harmony search (HS), and bat-inspired (BA) algorithms for the location and size of renewable distributed generation (RDG) in radial distribution networks using a multiobjective function defined as minimizing the energy losses and the RDG costs. The metaheuristic algorithms were programmed in Matlab and tested using the 33-node radial distribution network. The three algorithms obtained similar results for the two objectives evaluated, finding points close to the best solutions in the Pareto front. Comparisons showed that the CS obtained the minimum results for most points evaluated, but the BA and the HS were close to the best solution.\",\"PeriodicalId\":30469,\"journal\":{\"name\":\"TecnoLogicas\",\"volume\":\"18 1\",\"pages\":\"105-116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TecnoLogicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22430/22565337.192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TecnoLogicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22430/22565337.192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

电力损耗对配电网的总成本有重大影响。使用可再生能源是改善电力损耗和成本的主要替代方案,尽管其他重要问题也得到了加强,如电压大小和网络拥塞。然而,由于搜索空间中有大量可能的组合,确定可再生能源发电机的最佳位置和大小有时可能是一项具有挑战性的任务。此外,多目标函数增加了问题的复杂性,首选元启发式方法在相对较短的时间内找到解决方案。本文以能量损失最小和RDG成本最小为目标,对布谷鸟搜索(CS)、和谐搜索(HS)和蝙蝠启发(BA)算法在径向配电网中可再生分布式发电(RDG)位置和规模问题上的性能进行了评价。在Matlab中编写了元启发式算法,并在33节点径向配电网中进行了测试。对于两个被评估的目标,这三种算法得到了相似的结果,都是在Pareto前沿找到接近最优解的点。比较表明,CS在大多数评价点上获得了最小的结果,而BA和HS接近于最佳解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparación de algoritmos multiobjetivo inspirados en búsqueda armónica, búsqueda cuco y murciélagos para la ubicación de generación distribuida renovable
Electric power losses have a significant impact on the total costs of distribution networks. The use of renewable energy sources is a major alternative to improve power losses and costs, although other important issues are also enhanced such as voltage magnitudes and network congestion. However, determining the best location and size of renewable energy generators can be sometimes a challenging task due to a large number of possible combinations in the search space. Furthermore, the multiobjective functions increase the complexity of the problem and metaheuristics are preferred to find solutions in a relatively short time. This paper evaluates the performance of the cuckoo search (CS), harmony search (HS), and bat-inspired (BA) algorithms for the location and size of renewable distributed generation (RDG) in radial distribution networks using a multiobjective function defined as minimizing the energy losses and the RDG costs. The metaheuristic algorithms were programmed in Matlab and tested using the 33-node radial distribution network. The three algorithms obtained similar results for the two objectives evaluated, finding points close to the best solutions in the Pareto front. Comparisons showed that the CS obtained the minimum results for most points evaluated, but the BA and the HS were close to the best solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
30
审稿时长
28 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信