{"title":"脱硅HZSM-12对苯与苯醇苄化反应的催化性能","authors":"S. Akyalcin, L. Akyalçın, M. Bjørgen","doi":"10.2298/ciceq220620006a","DOIUrl":null,"url":null,"abstract":"The catalytic production of diphenylmethane from the reaction of benzene with benzyl alcohol was investigated using HZSM-12 and desilicated HZSM-12 that was obtained by treating ZSM-12 with 0.2M NaOH solution at 85?C for 60 min. The untreated and alkaline treated ZSM-12 zeolites were characterized by X-ray diffraction, nitrogen adsorption/desorption isotherms, scanning electron microscopy, inductively coupled plasma optical emission spectrometry, and temperature-programmed desorption of ammonia. The desilicated HZSM-12 showed promising catalytic performance with benzyl alcohol conversion of 100 %, selectivity to diphenylmethane of 74 % (in 4 h reaction time), and that of 87 % (in 8 h reaction time). The reaction parameters affecting benzyl alcohol conversion and product distribution were also presented. The activities of fresh and regenerated catalysts were compared and characterization results indicated that the occluded organic molecules decreased the number of acidic sites of the catalyst after the reaction and regeneration.","PeriodicalId":9716,"journal":{"name":"Chemical Industry & Chemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic performance of desilicated HZSM-12 for benzylation reaction of benzene with benzyl alcohol\",\"authors\":\"S. Akyalcin, L. Akyalçın, M. Bjørgen\",\"doi\":\"10.2298/ciceq220620006a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The catalytic production of diphenylmethane from the reaction of benzene with benzyl alcohol was investigated using HZSM-12 and desilicated HZSM-12 that was obtained by treating ZSM-12 with 0.2M NaOH solution at 85?C for 60 min. The untreated and alkaline treated ZSM-12 zeolites were characterized by X-ray diffraction, nitrogen adsorption/desorption isotherms, scanning electron microscopy, inductively coupled plasma optical emission spectrometry, and temperature-programmed desorption of ammonia. The desilicated HZSM-12 showed promising catalytic performance with benzyl alcohol conversion of 100 %, selectivity to diphenylmethane of 74 % (in 4 h reaction time), and that of 87 % (in 8 h reaction time). The reaction parameters affecting benzyl alcohol conversion and product distribution were also presented. The activities of fresh and regenerated catalysts were compared and characterization results indicated that the occluded organic molecules decreased the number of acidic sites of the catalyst after the reaction and regeneration.\",\"PeriodicalId\":9716,\"journal\":{\"name\":\"Chemical Industry & Chemical Engineering Quarterly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Industry & Chemical Engineering Quarterly\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/ciceq220620006a\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry & Chemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ciceq220620006a","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Catalytic performance of desilicated HZSM-12 for benzylation reaction of benzene with benzyl alcohol
The catalytic production of diphenylmethane from the reaction of benzene with benzyl alcohol was investigated using HZSM-12 and desilicated HZSM-12 that was obtained by treating ZSM-12 with 0.2M NaOH solution at 85?C for 60 min. The untreated and alkaline treated ZSM-12 zeolites were characterized by X-ray diffraction, nitrogen adsorption/desorption isotherms, scanning electron microscopy, inductively coupled plasma optical emission spectrometry, and temperature-programmed desorption of ammonia. The desilicated HZSM-12 showed promising catalytic performance with benzyl alcohol conversion of 100 %, selectivity to diphenylmethane of 74 % (in 4 h reaction time), and that of 87 % (in 8 h reaction time). The reaction parameters affecting benzyl alcohol conversion and product distribution were also presented. The activities of fresh and regenerated catalysts were compared and characterization results indicated that the occluded organic molecules decreased the number of acidic sites of the catalyst after the reaction and regeneration.
期刊介绍:
The Journal invites contributions to the following two main areas:
• Applied Chemistry dealing with the application of basic chemical sciences to industry
• Chemical Engineering dealing with the chemical and biochemical conversion of raw materials into different products as well as the design and operation of plants and equipment.
The Journal welcomes contributions focused on:
Chemical and Biochemical Engineering [...]
Process Systems Engineering[...]
Environmental Chemical and Process Engineering[...]
Materials Synthesis and Processing[...]
Food and Bioproducts Processing[...]
Process Technology[...]