{"title":"水介质中除汞用绿葡萄马克生物吸附剂的制备","authors":"S. Del, Alvaro Maggio, Lucia Mergola","doi":"10.2298/ciceq201014008s","DOIUrl":null,"url":null,"abstract":"In this study, grape marc waste from Negroamaro (a South of Italy vine variety) winery production, were used for the preparation of biosorbents for Hg(II) removal in aqueous media. A green approach was used to develop a proper biosorbent through two different grape marc washing procedures. In particular, the common chloridric acid and the greener citric acid, were evaluated. Comparing the adsorption results, the biosorbent prepared using citric acid as washing agent (GM-CA) gave similar results to the biosorbent washed with HCl (GM-HCl) with a maximum adsorption capacity of 36.39 mg g-1. Isothermal studies revealed a heterogeneous physical adsorption of Hg(II) on the biosorbents. Moreover, FTIR analysis of the grape marc-based biosorbent without and with Hg(II), confirmed ionic interactions in the biosorbent that fit with a pseudo-second order kinetic model. No significant adsorption on the biosorbent was observed when two other heavy metals, copper(II) and nickel(II), previously studied for similar sorbents, were considered. Finally, reusability of GM-CA biosorbent was also demonstrated over three cycles. Thus, the green preparation approach used in this work can be considered suitable for development of grape marc-based biosorbents.","PeriodicalId":9716,"journal":{"name":"Chemical Industry & Chemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green grape marc biosorbents preparation for mercury removal in aqueous media\",\"authors\":\"S. Del, Alvaro Maggio, Lucia Mergola\",\"doi\":\"10.2298/ciceq201014008s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, grape marc waste from Negroamaro (a South of Italy vine variety) winery production, were used for the preparation of biosorbents for Hg(II) removal in aqueous media. A green approach was used to develop a proper biosorbent through two different grape marc washing procedures. In particular, the common chloridric acid and the greener citric acid, were evaluated. Comparing the adsorption results, the biosorbent prepared using citric acid as washing agent (GM-CA) gave similar results to the biosorbent washed with HCl (GM-HCl) with a maximum adsorption capacity of 36.39 mg g-1. Isothermal studies revealed a heterogeneous physical adsorption of Hg(II) on the biosorbents. Moreover, FTIR analysis of the grape marc-based biosorbent without and with Hg(II), confirmed ionic interactions in the biosorbent that fit with a pseudo-second order kinetic model. No significant adsorption on the biosorbent was observed when two other heavy metals, copper(II) and nickel(II), previously studied for similar sorbents, were considered. Finally, reusability of GM-CA biosorbent was also demonstrated over three cycles. Thus, the green preparation approach used in this work can be considered suitable for development of grape marc-based biosorbents.\",\"PeriodicalId\":9716,\"journal\":{\"name\":\"Chemical Industry & Chemical Engineering Quarterly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Industry & Chemical Engineering Quarterly\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/ciceq201014008s\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry & Chemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ciceq201014008s","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Green grape marc biosorbents preparation for mercury removal in aqueous media
In this study, grape marc waste from Negroamaro (a South of Italy vine variety) winery production, were used for the preparation of biosorbents for Hg(II) removal in aqueous media. A green approach was used to develop a proper biosorbent through two different grape marc washing procedures. In particular, the common chloridric acid and the greener citric acid, were evaluated. Comparing the adsorption results, the biosorbent prepared using citric acid as washing agent (GM-CA) gave similar results to the biosorbent washed with HCl (GM-HCl) with a maximum adsorption capacity of 36.39 mg g-1. Isothermal studies revealed a heterogeneous physical adsorption of Hg(II) on the biosorbents. Moreover, FTIR analysis of the grape marc-based biosorbent without and with Hg(II), confirmed ionic interactions in the biosorbent that fit with a pseudo-second order kinetic model. No significant adsorption on the biosorbent was observed when two other heavy metals, copper(II) and nickel(II), previously studied for similar sorbents, were considered. Finally, reusability of GM-CA biosorbent was also demonstrated over three cycles. Thus, the green preparation approach used in this work can be considered suitable for development of grape marc-based biosorbents.
期刊介绍:
The Journal invites contributions to the following two main areas:
• Applied Chemistry dealing with the application of basic chemical sciences to industry
• Chemical Engineering dealing with the chemical and biochemical conversion of raw materials into different products as well as the design and operation of plants and equipment.
The Journal welcomes contributions focused on:
Chemical and Biochemical Engineering [...]
Process Systems Engineering[...]
Environmental Chemical and Process Engineering[...]
Materials Synthesis and Processing[...]
Food and Bioproducts Processing[...]
Process Technology[...]