{"title":"电fenton法降解水中有机磷杀虫剂的研究","authors":"M. Assassi, F. Madjene, A. Amrane","doi":"10.2298/apt2152063a","DOIUrl":null,"url":null,"abstract":"This work proposes the remediation of toxic and/or refractory pollutants, such as the organophosphorus insecticide (Phosmet) which cannot be completely degraded by conventional methods like biological treatment, adsorption, flocculation, electro-flocculation, reverse osmosis, ultrafiltration, coagulation. However, these techniques have some disadvantages such as incomplete removal, therefore, the Electro-Fenton process was used. The major factors affecting the removal of Phosmet, namely the current intensity, catalyst concentration (Fe3+), temperature solution, nature of the electrolytes and oxygenation duration of the solution were studied in this work. The optimal operating conditions appeared to be: current intensity 200 mA, 0.5 mmol L-1 of Fe3+, T= 20?C, pH =3 using Na2SO4 (50 mmol L-1) as supporting electrolyte and an oxygen supply throughout all the experiments (120 min). Under these optimal conditions, the removal efficiency of the phosmet was 88%.","PeriodicalId":7021,"journal":{"name":"Acta Periodica Technologica","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Degradation of an organophosphorus insecticide in aqueous medium by Electro-Fenton process\",\"authors\":\"M. Assassi, F. Madjene, A. Amrane\",\"doi\":\"10.2298/apt2152063a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes the remediation of toxic and/or refractory pollutants, such as the organophosphorus insecticide (Phosmet) which cannot be completely degraded by conventional methods like biological treatment, adsorption, flocculation, electro-flocculation, reverse osmosis, ultrafiltration, coagulation. However, these techniques have some disadvantages such as incomplete removal, therefore, the Electro-Fenton process was used. The major factors affecting the removal of Phosmet, namely the current intensity, catalyst concentration (Fe3+), temperature solution, nature of the electrolytes and oxygenation duration of the solution were studied in this work. The optimal operating conditions appeared to be: current intensity 200 mA, 0.5 mmol L-1 of Fe3+, T= 20?C, pH =3 using Na2SO4 (50 mmol L-1) as supporting electrolyte and an oxygen supply throughout all the experiments (120 min). Under these optimal conditions, the removal efficiency of the phosmet was 88%.\",\"PeriodicalId\":7021,\"journal\":{\"name\":\"Acta Periodica Technologica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Periodica Technologica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/apt2152063a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Periodica Technologica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/apt2152063a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Degradation of an organophosphorus insecticide in aqueous medium by Electro-Fenton process
This work proposes the remediation of toxic and/or refractory pollutants, such as the organophosphorus insecticide (Phosmet) which cannot be completely degraded by conventional methods like biological treatment, adsorption, flocculation, electro-flocculation, reverse osmosis, ultrafiltration, coagulation. However, these techniques have some disadvantages such as incomplete removal, therefore, the Electro-Fenton process was used. The major factors affecting the removal of Phosmet, namely the current intensity, catalyst concentration (Fe3+), temperature solution, nature of the electrolytes and oxygenation duration of the solution were studied in this work. The optimal operating conditions appeared to be: current intensity 200 mA, 0.5 mmol L-1 of Fe3+, T= 20?C, pH =3 using Na2SO4 (50 mmol L-1) as supporting electrolyte and an oxygen supply throughout all the experiments (120 min). Under these optimal conditions, the removal efficiency of the phosmet was 88%.