以掺铌TiO2为缓冲层的高效钙钛矿太阳能电池

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY
A. Baktash, O. Amiri, M. Saadat
{"title":"以掺铌TiO2为缓冲层的高效钙钛矿太阳能电池","authors":"A. Baktash, O. Amiri, M. Saadat","doi":"10.22052/JNS.2020.01.013","DOIUrl":null,"url":null,"abstract":"Here, the effect of lightly Niobium doped TiO2 layer on the performance of perovskite solar cells has been studied by using solar cell capacitance simulator (SCAPS). N addition, the effects of Niobium concentration, buffer film thickness and operating temperature on the performance of the perovskite solar cell are investigated. For doping level of 3.0 mol% into the TiO2 layer, cell efficiency of 18.26% with Voc of 0.96 V, Jsc of 22.45 mA/ cm2 and FF of 84.25% has been achieved. Calculations show that thickness widening of Nb-doped TiO2 layer would decrease the efficiency and Voc of the cells. Increase in operating temperature from 300 k to 400 k would weaken the performance of the perovskite solar cell with both pure and Nb-doped TiO2 layers. However, the cell with Nb-doped TiO2 layer shows higher stability than the cell with pure TiO2 buffer at higher temperatures. The efficiency of the cell with pure and doped buffer layers decreased from 15.52% to 11.47% (with 26.09% reduction) and 18.26% to 14.07% (with 22.9% declination), respectively. Therefore, the cell with doped buffer layer shows better stability at higher operating temperatures","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"119-127"},"PeriodicalIF":1.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"High efficient Perovskite solar cells base on Niobium Doped TiO2 as a Buffer Layer\",\"authors\":\"A. Baktash, O. Amiri, M. Saadat\",\"doi\":\"10.22052/JNS.2020.01.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, the effect of lightly Niobium doped TiO2 layer on the performance of perovskite solar cells has been studied by using solar cell capacitance simulator (SCAPS). N addition, the effects of Niobium concentration, buffer film thickness and operating temperature on the performance of the perovskite solar cell are investigated. For doping level of 3.0 mol% into the TiO2 layer, cell efficiency of 18.26% with Voc of 0.96 V, Jsc of 22.45 mA/ cm2 and FF of 84.25% has been achieved. Calculations show that thickness widening of Nb-doped TiO2 layer would decrease the efficiency and Voc of the cells. Increase in operating temperature from 300 k to 400 k would weaken the performance of the perovskite solar cell with both pure and Nb-doped TiO2 layers. However, the cell with Nb-doped TiO2 layer shows higher stability than the cell with pure TiO2 buffer at higher temperatures. The efficiency of the cell with pure and doped buffer layers decreased from 15.52% to 11.47% (with 26.09% reduction) and 18.26% to 14.07% (with 22.9% declination), respectively. Therefore, the cell with doped buffer layer shows better stability at higher operating temperatures\",\"PeriodicalId\":16523,\"journal\":{\"name\":\"Journal of Nanostructures\",\"volume\":\"10 1\",\"pages\":\"119-127\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/JNS.2020.01.013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2020.01.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

本文利用太阳能电池电容模拟器(SCAPS)研究了轻铌掺杂TiO2层对钙钛矿太阳能电池性能的影响。此外,还研究了铌浓度、缓冲膜厚度和工作温度对钙钛矿太阳能电池性能的影响。当TiO2掺杂量为3.0 mol%时,电池效率为18.26%,Voc为0.96 V, Jsc为22.45 mA/ cm2, FF为84.25%。计算结果表明,nb掺杂TiO2层的厚度变宽会降低电池的效率和Voc。当工作温度从300 k增加到400 k时,纯和nb掺杂TiO2层的钙钛矿太阳能电池的性能都会减弱。然而,在较高温度下,掺杂nb - TiO2层的电池比纯TiO2缓冲层的电池表现出更高的稳定性。纯缓冲层和掺杂缓冲层的电池效率分别从15.52%下降到11.47%(下降26.09%)和18.26%下降到14.07%(下降22.9%)。因此,掺杂缓冲层的电池在较高的工作温度下表现出更好的稳定性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High efficient Perovskite solar cells base on Niobium Doped TiO2 as a Buffer Layer
Here, the effect of lightly Niobium doped TiO2 layer on the performance of perovskite solar cells has been studied by using solar cell capacitance simulator (SCAPS). N addition, the effects of Niobium concentration, buffer film thickness and operating temperature on the performance of the perovskite solar cell are investigated. For doping level of 3.0 mol% into the TiO2 layer, cell efficiency of 18.26% with Voc of 0.96 V, Jsc of 22.45 mA/ cm2 and FF of 84.25% has been achieved. Calculations show that thickness widening of Nb-doped TiO2 layer would decrease the efficiency and Voc of the cells. Increase in operating temperature from 300 k to 400 k would weaken the performance of the perovskite solar cell with both pure and Nb-doped TiO2 layers. However, the cell with Nb-doped TiO2 layer shows higher stability than the cell with pure TiO2 buffer at higher temperatures. The efficiency of the cell with pure and doped buffer layers decreased from 15.52% to 11.47% (with 26.09% reduction) and 18.26% to 14.07% (with 22.9% declination), respectively. Therefore, the cell with doped buffer layer shows better stability at higher operating temperatures
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanostructures
Journal of Nanostructures NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊介绍: Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信