Ag/ZnO纳米复合材料:制备、表征及液相氧化甲苯催化活性研究

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY
A. Ebadi, M. Mozaffari
{"title":"Ag/ZnO纳米复合材料:制备、表征及液相氧化甲苯催化活性研究","authors":"A. Ebadi, M. Mozaffari","doi":"10.22052/JNS.2020.01.001","DOIUrl":null,"url":null,"abstract":"In this research, Ag/ZnO nanocomposites were prepared and characterized by transition electron microscopy (TEM), the energy dispersive X-ray spectrum (EDS) and X-ray diffraction patterns (XRD). These nanocomposites were used as catalysts for the oxidation of toluene to benzaldehyde and benzoic acid with hydrogen peroxide (H2O2) and tert-butylhydroperoxide (TBHP) as oxidizing agent in the liquid phase. For these Ag/ZnO nanocomposites, acetonitrile was used as a solvent, since all the reagents dissolved and show the highest yields. The oxidation products of toluene are benzaldehyde and benzoic acid. The results of this study showed that oxidant and the catalyst type affected the efficiency of toluene oxidation. TBHP was found to be better oxidizing agent than H2O2 since higher efficiency of product were observed when TBHP was used. The catalytic performance of 2.5%Ag/ZnO nanocomposite was better than the 1% and 5%Ag/ZnO nanocomposites. Under the optimal reaction conditions, the catalytic system of 2.5%Ag/ZnO nanocomposite gave about 76.3% efficiency of toluene.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"1-8"},"PeriodicalIF":1.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ag/ZnO Nanocomposites: Preparation, Characterization and Investigation of the Catalytic Activity for Oxidation of Toluene in Liquid Phase\",\"authors\":\"A. Ebadi, M. Mozaffari\",\"doi\":\"10.22052/JNS.2020.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, Ag/ZnO nanocomposites were prepared and characterized by transition electron microscopy (TEM), the energy dispersive X-ray spectrum (EDS) and X-ray diffraction patterns (XRD). These nanocomposites were used as catalysts for the oxidation of toluene to benzaldehyde and benzoic acid with hydrogen peroxide (H2O2) and tert-butylhydroperoxide (TBHP) as oxidizing agent in the liquid phase. For these Ag/ZnO nanocomposites, acetonitrile was used as a solvent, since all the reagents dissolved and show the highest yields. The oxidation products of toluene are benzaldehyde and benzoic acid. The results of this study showed that oxidant and the catalyst type affected the efficiency of toluene oxidation. TBHP was found to be better oxidizing agent than H2O2 since higher efficiency of product were observed when TBHP was used. The catalytic performance of 2.5%Ag/ZnO nanocomposite was better than the 1% and 5%Ag/ZnO nanocomposites. Under the optimal reaction conditions, the catalytic system of 2.5%Ag/ZnO nanocomposite gave about 76.3% efficiency of toluene.\",\"PeriodicalId\":16523,\"journal\":{\"name\":\"Journal of Nanostructures\",\"volume\":\"10 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/JNS.2020.01.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2020.01.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

本研究制备了Ag/ZnO纳米复合材料,并用透射电镜(TEM)、能谱仪(EDS)和x射线衍射仪(XRD)对其进行了表征。在液相中,以过氧化氢(H2O2)和过氧化叔丁基(TBHP)为氧化剂,将这些纳米复合材料用作甲苯氧化制苯甲醛和苯甲酸的催化剂。对于这些Ag/ZnO纳米复合材料,使用乙腈作为溶剂,因为所有的试剂都溶解并且显示出最高的收率。甲苯的氧化产物是苯甲醛和苯甲酸。研究结果表明,氧化剂和催化剂类型对甲苯氧化效率有影响。结果表明,三必和必拓是一种比H2O2更好的氧化剂,其产物效率更高。2.5%Ag/ZnO纳米复合材料的催化性能优于1%和5%Ag/ZnO纳米复合材料。在最佳反应条件下,2.5%Ag/ZnO纳米复合材料的甲苯效率为76.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ag/ZnO Nanocomposites: Preparation, Characterization and Investigation of the Catalytic Activity for Oxidation of Toluene in Liquid Phase
In this research, Ag/ZnO nanocomposites were prepared and characterized by transition electron microscopy (TEM), the energy dispersive X-ray spectrum (EDS) and X-ray diffraction patterns (XRD). These nanocomposites were used as catalysts for the oxidation of toluene to benzaldehyde and benzoic acid with hydrogen peroxide (H2O2) and tert-butylhydroperoxide (TBHP) as oxidizing agent in the liquid phase. For these Ag/ZnO nanocomposites, acetonitrile was used as a solvent, since all the reagents dissolved and show the highest yields. The oxidation products of toluene are benzaldehyde and benzoic acid. The results of this study showed that oxidant and the catalyst type affected the efficiency of toluene oxidation. TBHP was found to be better oxidizing agent than H2O2 since higher efficiency of product were observed when TBHP was used. The catalytic performance of 2.5%Ag/ZnO nanocomposite was better than the 1% and 5%Ag/ZnO nanocomposites. Under the optimal reaction conditions, the catalytic system of 2.5%Ag/ZnO nanocomposite gave about 76.3% efficiency of toluene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanostructures
Journal of Nanostructures NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊介绍: Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信