{"title":"基于地面激光扫描密度的数字高程模型生成精度研究","authors":"P.Yu. Ilyuslin, M.S. Kraev, N. S. Malinina","doi":"10.22389/0016-7126-2023-991-1-15-19","DOIUrl":null,"url":null,"abstract":"\nThe authors discuss the course of processing the terrestrial laser scanning survey data (TLS). The aim of the study is to assess the accuracy of creating digital elevation models (DEMs) depending on the scanning step. As initial data, a stitched and oriented cloud of points of the surveyed surface in the territory of the industrial site was taken; it was subsequently used to create digital elevation models using the TIN method. At the next stage of the study, 6 surveys with different scanning steps (from 0,3 m to 5 m) were artificially simulated in the Cyclone software; after that a comparative analysis of the obtained DEMs building accuracy was carried out. The main indicator of model precision is the root-mean-square deviation (RMSD). In the course of the study, the quality of making a digital elevation models was assessed and the dependence of the surface construction error on the increase in the scanning step was determined.\n","PeriodicalId":35691,"journal":{"name":"Geodeziya i Kartografiya","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the digital elevation model creating accuracy depending on the terrestrial laser scanning density\",\"authors\":\"P.Yu. Ilyuslin, M.S. Kraev, N. S. Malinina\",\"doi\":\"10.22389/0016-7126-2023-991-1-15-19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe authors discuss the course of processing the terrestrial laser scanning survey data (TLS). The aim of the study is to assess the accuracy of creating digital elevation models (DEMs) depending on the scanning step. As initial data, a stitched and oriented cloud of points of the surveyed surface in the territory of the industrial site was taken; it was subsequently used to create digital elevation models using the TIN method. At the next stage of the study, 6 surveys with different scanning steps (from 0,3 m to 5 m) were artificially simulated in the Cyclone software; after that a comparative analysis of the obtained DEMs building accuracy was carried out. The main indicator of model precision is the root-mean-square deviation (RMSD). In the course of the study, the quality of making a digital elevation models was assessed and the dependence of the surface construction error on the increase in the scanning step was determined.\\n\",\"PeriodicalId\":35691,\"journal\":{\"name\":\"Geodeziya i Kartografiya\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodeziya i Kartografiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22389/0016-7126-2023-991-1-15-19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodeziya i Kartografiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22389/0016-7126-2023-991-1-15-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Investigation of the digital elevation model creating accuracy depending on the terrestrial laser scanning density
The authors discuss the course of processing the terrestrial laser scanning survey data (TLS). The aim of the study is to assess the accuracy of creating digital elevation models (DEMs) depending on the scanning step. As initial data, a stitched and oriented cloud of points of the surveyed surface in the territory of the industrial site was taken; it was subsequently used to create digital elevation models using the TIN method. At the next stage of the study, 6 surveys with different scanning steps (from 0,3 m to 5 m) were artificially simulated in the Cyclone software; after that a comparative analysis of the obtained DEMs building accuracy was carried out. The main indicator of model precision is the root-mean-square deviation (RMSD). In the course of the study, the quality of making a digital elevation models was assessed and the dependence of the surface construction error on the increase in the scanning step was determined.