{"title":"甲状腺癌的PET/CT表现","authors":"J. Mihailovic","doi":"10.2298/AOO1204112M","DOIUrl":null,"url":null,"abstract":"The diagnostic imaging procedures that have a role in detection of malignant thyroid tissue are radioiodine (131I) diagnostic whole-body scintigraphy (WBS), neck ultrasound, and CT and MRI for evaluation of the mediastinal area. Despite excellent morphologic characterization of metastatic nodal recurrences, MRI cannot reliably make a differentiation between benign and malignant lymph nodes. Although it detects enlarged metastatic lymph nodes, there are also many small nodal metastases that are usually missed. In one-third of patients with well differentiated thyroid carcinoma, there are carcinomas with dedifferentiated tumor cells: metastatic tissue may not concentrate radioiodine well; thus 131I-WBS is negative despite elevated thyroglobulin (Tg) levels. Although MRI helps in detection of these non-iodine avid metastases, FDG PET/CT can perform more effectively. Due to its high glycolytic rate, changes in glucose transport systems and hexokinase activity, [18F] fluorodeoxyglucose (FDG) accumulates in malignant tissue and is useful for identification of distant metastases in these patients. Iodine positive metastases are often negative with FDG-PET imaging while iodine negative metastases exhibit increased FDG-uptake. If a metastatic lesion is identified by FDG positron emission tomography/ computed tomography (PET/CT), the usual approach is to first send the patient to surgery for removal of neoplastic tissue, if possible. This is followed by re-treatment with 131I therapy after tumor redifferentiation with retinoic acid. In a limited number of patients, iodine negative thyroid cancer may express somatostatin receptors and radiopeptide therapy may be utilized. FDG PET/CT is a hybrid imaging diagnostic tool which helps in detection of non-iodine avid metastases. It has a role in exact localization of recurrences which will assist in the decision to remove the malignant tissue surgically.","PeriodicalId":35645,"journal":{"name":"Archive of Oncology","volume":"21 1","pages":"112-116"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2298/AOO1204112M","citationCount":"0","resultStr":"{\"title\":\"PET/CT in thyroid carcinoma\",\"authors\":\"J. Mihailovic\",\"doi\":\"10.2298/AOO1204112M\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diagnostic imaging procedures that have a role in detection of malignant thyroid tissue are radioiodine (131I) diagnostic whole-body scintigraphy (WBS), neck ultrasound, and CT and MRI for evaluation of the mediastinal area. Despite excellent morphologic characterization of metastatic nodal recurrences, MRI cannot reliably make a differentiation between benign and malignant lymph nodes. Although it detects enlarged metastatic lymph nodes, there are also many small nodal metastases that are usually missed. In one-third of patients with well differentiated thyroid carcinoma, there are carcinomas with dedifferentiated tumor cells: metastatic tissue may not concentrate radioiodine well; thus 131I-WBS is negative despite elevated thyroglobulin (Tg) levels. Although MRI helps in detection of these non-iodine avid metastases, FDG PET/CT can perform more effectively. Due to its high glycolytic rate, changes in glucose transport systems and hexokinase activity, [18F] fluorodeoxyglucose (FDG) accumulates in malignant tissue and is useful for identification of distant metastases in these patients. Iodine positive metastases are often negative with FDG-PET imaging while iodine negative metastases exhibit increased FDG-uptake. If a metastatic lesion is identified by FDG positron emission tomography/ computed tomography (PET/CT), the usual approach is to first send the patient to surgery for removal of neoplastic tissue, if possible. This is followed by re-treatment with 131I therapy after tumor redifferentiation with retinoic acid. In a limited number of patients, iodine negative thyroid cancer may express somatostatin receptors and radiopeptide therapy may be utilized. FDG PET/CT is a hybrid imaging diagnostic tool which helps in detection of non-iodine avid metastases. It has a role in exact localization of recurrences which will assist in the decision to remove the malignant tissue surgically.\",\"PeriodicalId\":35645,\"journal\":{\"name\":\"Archive of Oncology\",\"volume\":\"21 1\",\"pages\":\"112-116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2298/AOO1204112M\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/AOO1204112M\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/AOO1204112M","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
The diagnostic imaging procedures that have a role in detection of malignant thyroid tissue are radioiodine (131I) diagnostic whole-body scintigraphy (WBS), neck ultrasound, and CT and MRI for evaluation of the mediastinal area. Despite excellent morphologic characterization of metastatic nodal recurrences, MRI cannot reliably make a differentiation between benign and malignant lymph nodes. Although it detects enlarged metastatic lymph nodes, there are also many small nodal metastases that are usually missed. In one-third of patients with well differentiated thyroid carcinoma, there are carcinomas with dedifferentiated tumor cells: metastatic tissue may not concentrate radioiodine well; thus 131I-WBS is negative despite elevated thyroglobulin (Tg) levels. Although MRI helps in detection of these non-iodine avid metastases, FDG PET/CT can perform more effectively. Due to its high glycolytic rate, changes in glucose transport systems and hexokinase activity, [18F] fluorodeoxyglucose (FDG) accumulates in malignant tissue and is useful for identification of distant metastases in these patients. Iodine positive metastases are often negative with FDG-PET imaging while iodine negative metastases exhibit increased FDG-uptake. If a metastatic lesion is identified by FDG positron emission tomography/ computed tomography (PET/CT), the usual approach is to first send the patient to surgery for removal of neoplastic tissue, if possible. This is followed by re-treatment with 131I therapy after tumor redifferentiation with retinoic acid. In a limited number of patients, iodine negative thyroid cancer may express somatostatin receptors and radiopeptide therapy may be utilized. FDG PET/CT is a hybrid imaging diagnostic tool which helps in detection of non-iodine avid metastases. It has a role in exact localization of recurrences which will assist in the decision to remove the malignant tissue surgically.
期刊介绍:
Archive of Oncology is an international oncology journal that publishes original research, editorials, review articles, case (clinical) reports, and news from oncology (medical, surgical, radiation), experimental oncology, cancer epidemiology, and prevention. Letters are also welcomed. Archive of Oncology is covered by Biomedicina Vojvodina, Biomedicina Serbica, Biomedicina Oncologica, EMBASE/Excerpta Medica, ExtraMED and SCOPUS.