评估器固定结构学习自动机在社会网络抽样中的应用

S. Roohollahi, A. K. Bardsiri, F. Keynia
{"title":"评估器固定结构学习自动机在社会网络抽样中的应用","authors":"S. Roohollahi, A. K. Bardsiri, F. Keynia","doi":"10.22044/JADM.2019.7145.1842","DOIUrl":null,"url":null,"abstract":"Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and large size of most social networks make it difficult or impossible to study the entire network. This paper proposes a sampling algorithm that equipped with an evaluator unit for analyzing the edges and a set of simple fixed structure learning automata. Evaluator unit evaluates each edge and then decides whether edge and corresponding node should be added to the sample set. In The proposed algorithm, each main activity graph node is equipped with a simple learning automaton. The proposed algorithm is compared with the best current sampling algorithm that was reported in the Kolmogorov-Smirnov test (KS) and normalized L1 and L2 distances in real networks and synthetic networks presented as a sequence of edges. Experimental results show the superiority of the proposed algorithm.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Using an Evaluator Fixed Structure Learning Automata in Sampling of Social Networks\",\"authors\":\"S. Roohollahi, A. K. Bardsiri, F. Keynia\",\"doi\":\"10.22044/JADM.2019.7145.1842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and large size of most social networks make it difficult or impossible to study the entire network. This paper proposes a sampling algorithm that equipped with an evaluator unit for analyzing the edges and a set of simple fixed structure learning automata. Evaluator unit evaluates each edge and then decides whether edge and corresponding node should be added to the sample set. In The proposed algorithm, each main activity graph node is equipped with a simple learning automaton. The proposed algorithm is compared with the best current sampling algorithm that was reported in the Kolmogorov-Smirnov test (KS) and normalized L1 and L2 distances in real networks and synthetic networks presented as a sequence of edges. Experimental results show the superiority of the proposed algorithm.\",\"PeriodicalId\":32592,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Data Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22044/JADM.2019.7145.1842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2019.7145.1842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

社交网络是流的,多样化的,包括广泛的边缘,随着时间的推移不断发展,并由用户之间的活动(如推文,电子邮件等)形成,其中用户之间的每项活动都为网络图添加了一个边缘。尽管它们很受欢迎,但大多数社交网络的动态性和庞大的规模使得研究整个网络变得困难或不可能。本文提出了一种采样算法,该算法配备了用于分析边缘的评估器单元和一组简单的固定结构学习自动机。评估器单元评估每条边,然后决定是否将边和相应的节点添加到样本集中。在该算法中,每个主活动图节点都配备了一个简单的学习自动机。将该算法与目前在Kolmogorov-Smirnov测试(KS)中报道的最佳采样算法以及真实网络和合成网络中作为边序列呈现的归一化L1和L2距离进行了比较。实验结果表明了该算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using an Evaluator Fixed Structure Learning Automata in Sampling of Social Networks
Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and large size of most social networks make it difficult or impossible to study the entire network. This paper proposes a sampling algorithm that equipped with an evaluator unit for analyzing the edges and a set of simple fixed structure learning automata. Evaluator unit evaluates each edge and then decides whether edge and corresponding node should be added to the sample set. In The proposed algorithm, each main activity graph node is equipped with a simple learning automaton. The proposed algorithm is compared with the best current sampling algorithm that was reported in the Kolmogorov-Smirnov test (KS) and normalized L1 and L2 distances in real networks and synthetic networks presented as a sequence of edges. Experimental results show the superiority of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信