{"title":"基于曲线拟合和细分的平面通用图像轮廓捕获方法","authors":"A. Ebrahimi, G. B. Loghmani, M. Sarfraz","doi":"10.22044/JADM.2019.6727.1788","DOIUrl":null,"url":null,"abstract":"In this paper, a new technique has been designed to capture the outline of 2D shapes using cubic B´ezier curves. The proposed technique avoids the traditional method of optimizing the global squared fitting error and emphasizes the local control of data points. A maximum error has been determined to preserve the absolute fitting error less than a criterion and it administers the process of curve subdivision. Depending on the specified maximum error, the proposed technique itself subdivides complex segments, and curve fitting is done simultaneously. A comparative study of experimental results embosses various advantages of the proposed technique such as accurate representation, low approximation errors and efficient computational complexity.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Capturing Outlines of Planar Generic Images by Simultaneous Curve Fitting and Sub-division\",\"authors\":\"A. Ebrahimi, G. B. Loghmani, M. Sarfraz\",\"doi\":\"10.22044/JADM.2019.6727.1788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new technique has been designed to capture the outline of 2D shapes using cubic B´ezier curves. The proposed technique avoids the traditional method of optimizing the global squared fitting error and emphasizes the local control of data points. A maximum error has been determined to preserve the absolute fitting error less than a criterion and it administers the process of curve subdivision. Depending on the specified maximum error, the proposed technique itself subdivides complex segments, and curve fitting is done simultaneously. A comparative study of experimental results embosses various advantages of the proposed technique such as accurate representation, low approximation errors and efficient computational complexity.\",\"PeriodicalId\":32592,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Data Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22044/JADM.2019.6727.1788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2019.6727.1788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Capturing Outlines of Planar Generic Images by Simultaneous Curve Fitting and Sub-division
In this paper, a new technique has been designed to capture the outline of 2D shapes using cubic B´ezier curves. The proposed technique avoids the traditional method of optimizing the global squared fitting error and emphasizes the local control of data points. A maximum error has been determined to preserve the absolute fitting error less than a criterion and it administers the process of curve subdivision. Depending on the specified maximum error, the proposed technique itself subdivides complex segments, and curve fitting is done simultaneously. A comparative study of experimental results embosses various advantages of the proposed technique such as accurate representation, low approximation errors and efficient computational complexity.