是什么推动了远红外无线电相关性的发展?

Marina Pavlovic, T. Prodanovic
{"title":"是什么推动了远红外无线电相关性的发展?","authors":"Marina Pavlovic, T. Prodanovic","doi":"10.2298/zmspn1937009p","DOIUrl":null,"url":null,"abstract":"Far infrared-radio correlation represents a linear relationship between far-infrared (FIR) and radio emission in star-forming galaxies. Previous observations have confirmed that this correlation is maintained over a large range of redshift and does not evolve, although a small dispersion is present. However, some of more recent observations at high redshift have shown the opposite. The question that arises is - what is driving this evolution? In this paper we investigate the possibility that galaxy morphology is the answer to this question. A sample of 37 submillimeter galaxies (SMGs) is analyzed. The observation and morphological class of these galaxies has previously been published. We examined FIR-radio correlation in galaxies of different morphological type in this sample and found that for star-forming disk galaxies correlation is stable and does not evolve and for irregular and interacting galaxies we find some hints of evolution.","PeriodicalId":30148,"journal":{"name":"Zbornik Matice Srpske za Prirodne Nauke","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What is driving the evolution of the far-infrared radio correlation?\",\"authors\":\"Marina Pavlovic, T. Prodanovic\",\"doi\":\"10.2298/zmspn1937009p\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Far infrared-radio correlation represents a linear relationship between far-infrared (FIR) and radio emission in star-forming galaxies. Previous observations have confirmed that this correlation is maintained over a large range of redshift and does not evolve, although a small dispersion is present. However, some of more recent observations at high redshift have shown the opposite. The question that arises is - what is driving this evolution? In this paper we investigate the possibility that galaxy morphology is the answer to this question. A sample of 37 submillimeter galaxies (SMGs) is analyzed. The observation and morphological class of these galaxies has previously been published. We examined FIR-radio correlation in galaxies of different morphological type in this sample and found that for star-forming disk galaxies correlation is stable and does not evolve and for irregular and interacting galaxies we find some hints of evolution.\",\"PeriodicalId\":30148,\"journal\":{\"name\":\"Zbornik Matice Srpske za Prirodne Nauke\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zbornik Matice Srpske za Prirodne Nauke\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/zmspn1937009p\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zbornik Matice Srpske za Prirodne Nauke","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/zmspn1937009p","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在恒星形成星系中,远红外(FIR)与射电辐射之间存在线性关系。先前的观测已经证实,这种相关性在红移的大范围内保持不变,并且不会演化,尽管存在小的色散。然而,最近对高红移的一些观测却显示出相反的结果。随之而来的问题是——是什么推动了这种进化?在本文中,我们研究了星系形态是这个问题的答案的可能性。对37个亚毫米星系(smg)的样本进行了分析。这些星系的观测和形态分类先前已经发表。我们在这个样本中检测了不同形态星系的FIR-radio相关性,发现对于形成恒星的盘状星系,相关性是稳定的,不会进化,对于不规则和相互作用的星系,我们发现了一些进化的线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What is driving the evolution of the far-infrared radio correlation?
Far infrared-radio correlation represents a linear relationship between far-infrared (FIR) and radio emission in star-forming galaxies. Previous observations have confirmed that this correlation is maintained over a large range of redshift and does not evolve, although a small dispersion is present. However, some of more recent observations at high redshift have shown the opposite. The question that arises is - what is driving this evolution? In this paper we investigate the possibility that galaxy morphology is the answer to this question. A sample of 37 submillimeter galaxies (SMGs) is analyzed. The observation and morphological class of these galaxies has previously been published. We examined FIR-radio correlation in galaxies of different morphological type in this sample and found that for star-forming disk galaxies correlation is stable and does not evolve and for irregular and interacting galaxies we find some hints of evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信