负载维甲酸的核壳纤维支架用于小梁间充质干细胞的神经元分化

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY
K. Asadi, Y. Mortazavi, S. Nadri
{"title":"负载维甲酸的核壳纤维支架用于小梁间充质干细胞的神经元分化","authors":"K. Asadi, Y. Mortazavi, S. Nadri","doi":"10.22038/NMJ.2021.08.08","DOIUrl":null,"url":null,"abstract":"Objective(s): Scientists believe that they can fabricate a biochemical scaffold and seed stem cells on it to create an extracellular matrix for tissue generation. This study sought to develop retinoic acid (RA)-loaded core-shell fibrous scaffolds (Poly-Caprolactone (PCL)/Polyethylene Oxide (PEO) based on electrospinning technique, to examine neural differentiation of trabecular mesenchymal stem cells (TM-MSCs). Materials and Methods: PEO-PCL core- shell fibrous scaffold was fabricated using coaxial electrospinning and Fourier transform infrared (FTIR) used to evaluate the chemical bond structure, scanning electron microscopy (SEM) has been utilized to evaluate surface topography and fibrous diameter, and transient electron microscopy (TEM) to evaluate core-shell structure. The neural differentiation was evaluated using Real-Time PCR.Results: The results of FTIR, SEM, and TEM confirm the fabrication of core-shell fibrous of PEO-PCL. The fabricated scaffold provides a suitable substrate for adhesion, cell proliferation, and differentiation. SEM images show changes in the morphology of TM-MSCs to neuronal cells. A sustained release of RA from the PEO/PCL scaffold was detected over 14 days. In addition, quantifying the expression of the gene indicates an increase in the gene expression of microtubule-associated protein 2 (MAP-2) gene.Conclusion:The PEO/PCL core-shell fibrous scaffold containing a RA constructed using coaxial electrospinning technique was a suitable substrate for inducing neuronal differentiation of TM-MSCs cultivated on core-shell scaffold.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":"8 1","pages":"73-79"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Retinoic acid –loaded core-shell fibrous scaffold for neuronal differentiation of trabecular mesenchymal stem cells\",\"authors\":\"K. Asadi, Y. Mortazavi, S. Nadri\",\"doi\":\"10.22038/NMJ.2021.08.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective(s): Scientists believe that they can fabricate a biochemical scaffold and seed stem cells on it to create an extracellular matrix for tissue generation. This study sought to develop retinoic acid (RA)-loaded core-shell fibrous scaffolds (Poly-Caprolactone (PCL)/Polyethylene Oxide (PEO) based on electrospinning technique, to examine neural differentiation of trabecular mesenchymal stem cells (TM-MSCs). Materials and Methods: PEO-PCL core- shell fibrous scaffold was fabricated using coaxial electrospinning and Fourier transform infrared (FTIR) used to evaluate the chemical bond structure, scanning electron microscopy (SEM) has been utilized to evaluate surface topography and fibrous diameter, and transient electron microscopy (TEM) to evaluate core-shell structure. The neural differentiation was evaluated using Real-Time PCR.Results: The results of FTIR, SEM, and TEM confirm the fabrication of core-shell fibrous of PEO-PCL. The fabricated scaffold provides a suitable substrate for adhesion, cell proliferation, and differentiation. SEM images show changes in the morphology of TM-MSCs to neuronal cells. A sustained release of RA from the PEO/PCL scaffold was detected over 14 days. In addition, quantifying the expression of the gene indicates an increase in the gene expression of microtubule-associated protein 2 (MAP-2) gene.Conclusion:The PEO/PCL core-shell fibrous scaffold containing a RA constructed using coaxial electrospinning technique was a suitable substrate for inducing neuronal differentiation of TM-MSCs cultivated on core-shell scaffold.\",\"PeriodicalId\":18933,\"journal\":{\"name\":\"Nanomedicine Journal\",\"volume\":\"8 1\",\"pages\":\"73-79\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22038/NMJ.2021.08.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22038/NMJ.2021.08.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

目的:科学家们相信他们可以制造生化支架,并在其上播种干细胞,以创造用于组织生成的细胞外基质。本研究旨在基于静电纺丝技术开发维甲酸(RA)负载的核壳纤维支架(聚己内酯(PCL)/聚环氧乙烷(PEO)),以检测小梁间充质干细胞(TM-MSCs)的神经分化。材料与方法:采用同轴静电纺丝技术制备PEO-PCL芯壳纤维支架,利用傅里叶变换红外(FTIR)对其化学键结构进行评价,利用扫描电子显微镜(SEM)对其表面形貌和纤维直径进行评价,利用瞬态电子显微镜(TEM)对其芯壳结构进行评价。采用Real-Time PCR检测神经分化情况。结果:FTIR、SEM、TEM等表征结果证实了PEO-PCL核壳纤维的制备。制备的支架为粘附、细胞增殖和分化提供了合适的基质。SEM图像显示TM-MSCs向神经元细胞的形态变化。在14天内,从PEO/PCL支架中检测到RA的持续释放。此外,定量表达该基因表明微管相关蛋白2 (MAP-2)基因表达增加。结论:采用同轴静电纺丝技术构建的含RA的PEO/PCL核壳纤维支架是诱导在核壳支架上培养的TM-MSCs神经元分化的合适底物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retinoic acid –loaded core-shell fibrous scaffold for neuronal differentiation of trabecular mesenchymal stem cells
Objective(s): Scientists believe that they can fabricate a biochemical scaffold and seed stem cells on it to create an extracellular matrix for tissue generation. This study sought to develop retinoic acid (RA)-loaded core-shell fibrous scaffolds (Poly-Caprolactone (PCL)/Polyethylene Oxide (PEO) based on electrospinning technique, to examine neural differentiation of trabecular mesenchymal stem cells (TM-MSCs). Materials and Methods: PEO-PCL core- shell fibrous scaffold was fabricated using coaxial electrospinning and Fourier transform infrared (FTIR) used to evaluate the chemical bond structure, scanning electron microscopy (SEM) has been utilized to evaluate surface topography and fibrous diameter, and transient electron microscopy (TEM) to evaluate core-shell structure. The neural differentiation was evaluated using Real-Time PCR.Results: The results of FTIR, SEM, and TEM confirm the fabrication of core-shell fibrous of PEO-PCL. The fabricated scaffold provides a suitable substrate for adhesion, cell proliferation, and differentiation. SEM images show changes in the morphology of TM-MSCs to neuronal cells. A sustained release of RA from the PEO/PCL scaffold was detected over 14 days. In addition, quantifying the expression of the gene indicates an increase in the gene expression of microtubule-associated protein 2 (MAP-2) gene.Conclusion:The PEO/PCL core-shell fibrous scaffold containing a RA constructed using coaxial electrospinning technique was a suitable substrate for inducing neuronal differentiation of TM-MSCs cultivated on core-shell scaffold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomedicine Journal
Nanomedicine Journal NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信