离散Muckenhoupt权值理论和离散Rubio de Francia外推定理

IF 1 4区 数学 Q1 MATHEMATICS
S. Saker, R. Agarwal
{"title":"离散Muckenhoupt权值理论和离散Rubio de Francia外推定理","authors":"S. Saker, R. Agarwal","doi":"10.2298/aadm210120017s","DOIUrl":null,"url":null,"abstract":"In this paper, we will prove a discrete Rubio De Francia extrapolation theorem in the theory of discrete Ap-Muckenhoupt weights for which the discrete Hardy-Littlewood maximal operator is bounded on lpw (Z+). The results will be proved by employing the self-improving property of the discrete Ap-Muckenhoupt weights and the Marcinkiewicz Interpolation Theorem.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Theory of discrete Muckenhoupt weights and discrete Rubio de Francia extrapolation theorems\",\"authors\":\"S. Saker, R. Agarwal\",\"doi\":\"10.2298/aadm210120017s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we will prove a discrete Rubio De Francia extrapolation theorem in the theory of discrete Ap-Muckenhoupt weights for which the discrete Hardy-Littlewood maximal operator is bounded on lpw (Z+). The results will be proved by employing the self-improving property of the discrete Ap-Muckenhoupt weights and the Marcinkiewicz Interpolation Theorem.\",\"PeriodicalId\":51232,\"journal\":{\"name\":\"Applicable Analysis and Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Analysis and Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/aadm210120017s\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm210120017s","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

本文证明了离散Ap-Muckenhoupt权理论中离散Hardy-Littlewood极大算子在lpw (Z+)上有界的一个离散Rubio De Francia外推定理。利用离散Ap-Muckenhoupt权值的自改进性质和Marcinkiewicz插值定理对结果进行了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theory of discrete Muckenhoupt weights and discrete Rubio de Francia extrapolation theorems
In this paper, we will prove a discrete Rubio De Francia extrapolation theorem in the theory of discrete Ap-Muckenhoupt weights for which the discrete Hardy-Littlewood maximal operator is bounded on lpw (Z+). The results will be proved by employing the self-improving property of the discrete Ap-Muckenhoupt weights and the Marcinkiewicz Interpolation Theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicable Analysis and Discrete Mathematics
Applicable Analysis and Discrete Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信