基于二元多项式族的带状Toeplitz矩阵的行列式计算

IF 1 4区 数学 Q1 MATHEMATICS
Abdullah Alazemi, E. Kılıç
{"title":"基于二元多项式族的带状Toeplitz矩阵的行列式计算","authors":"Abdullah Alazemi, E. Kılıç","doi":"10.2298/aadm210927014a","DOIUrl":null,"url":null,"abstract":"We define three kinds banded Toeplitz matrices via with the upper and lower bandwidths ??x? and ??y?. The determinant evaluation is explicitly given for three kinds banded Toeplitz matrices via bivariate Tribonacci and Delannoy polynomials by using generating function approach and recurrence relations. Moreover perturbed versions of each kinds of the banded Toeplitz matrices by a 2 ? 2 general square matrix at the upper right corner will be explicitly computed.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determinant evaluation of banded Toeplitz matrices via bivariate polynomial families\",\"authors\":\"Abdullah Alazemi, E. Kılıç\",\"doi\":\"10.2298/aadm210927014a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define three kinds banded Toeplitz matrices via with the upper and lower bandwidths ??x? and ??y?. The determinant evaluation is explicitly given for three kinds banded Toeplitz matrices via bivariate Tribonacci and Delannoy polynomials by using generating function approach and recurrence relations. Moreover perturbed versions of each kinds of the banded Toeplitz matrices by a 2 ? 2 general square matrix at the upper right corner will be explicitly computed.\",\"PeriodicalId\":51232,\"journal\":{\"name\":\"Applicable Analysis and Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Analysis and Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/aadm210927014a\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm210927014a","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了三种带状Toeplitz矩阵via,其上下带宽分别为x?y和? ? ?。利用生成函数法和递归关系,通过二元Tribonacci和Delannoy多项式,给出了三种带状Toeplitz矩阵的行列式求值。此外,每种带状Toeplitz矩阵的扰动版本被一个2 ?2 .将右上角的一般方阵显式计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determinant evaluation of banded Toeplitz matrices via bivariate polynomial families
We define three kinds banded Toeplitz matrices via with the upper and lower bandwidths ??x? and ??y?. The determinant evaluation is explicitly given for three kinds banded Toeplitz matrices via bivariate Tribonacci and Delannoy polynomials by using generating function approach and recurrence relations. Moreover perturbed versions of each kinds of the banded Toeplitz matrices by a 2 ? 2 general square matrix at the upper right corner will be explicitly computed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicable Analysis and Discrete Mathematics
Applicable Analysis and Discrete Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信