惠更斯不等式和威尔克不等式之间的关系以及进一步的评论

IF 1 4区 数学 Q1 MATHEMATICS
Chao-Ping Chen, C. Mortici
{"title":"惠更斯不等式和威尔克不等式之间的关系以及进一步的评论","authors":"Chao-Ping Chen, C. Mortici","doi":"10.2298/aadm210727012c","DOIUrl":null,"url":null,"abstract":"The first aim of this paper is to show how the Huygens? and Wilker?s inequalities are related. In this sense, we establish and prove a class of inequalities depending on a parameter n, where Huygens? and Wilker?s inequalities are obtained when n = 1 and n = 2, respectively. By exploiting the above idea, we introduce other classes of inequalities depending on a parameter, extending an inequality of Wilker type and also the classical Cusa inequality. Finally, some open problems are posed.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The relationship between Huygens’ and Wilker’s inequalities and further remarks\",\"authors\":\"Chao-Ping Chen, C. Mortici\",\"doi\":\"10.2298/aadm210727012c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first aim of this paper is to show how the Huygens? and Wilker?s inequalities are related. In this sense, we establish and prove a class of inequalities depending on a parameter n, where Huygens? and Wilker?s inequalities are obtained when n = 1 and n = 2, respectively. By exploiting the above idea, we introduce other classes of inequalities depending on a parameter, extending an inequality of Wilker type and also the classical Cusa inequality. Finally, some open problems are posed.\",\"PeriodicalId\":51232,\"journal\":{\"name\":\"Applicable Analysis and Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Analysis and Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/aadm210727012c\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm210727012c","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的第一个目的是展示惠更斯?和Wilker吗?S不等式是相关的。在这个意义上,我们建立并证明了一类依赖于参数n的不等式,其中惠更斯?和Wilker吗?当n = 1和n = 2时,分别得到S个不等式。利用上述思想,我们引入了其他类型的依赖于参数的不等式,扩展了Wilker型不等式和经典Cusa不等式。最后,提出了一些有待解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The relationship between Huygens’ and Wilker’s inequalities and further remarks
The first aim of this paper is to show how the Huygens? and Wilker?s inequalities are related. In this sense, we establish and prove a class of inequalities depending on a parameter n, where Huygens? and Wilker?s inequalities are obtained when n = 1 and n = 2, respectively. By exploiting the above idea, we introduce other classes of inequalities depending on a parameter, extending an inequality of Wilker type and also the classical Cusa inequality. Finally, some open problems are posed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicable Analysis and Discrete Mathematics
Applicable Analysis and Discrete Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信