与χ2分布的概率密度函数相关的完全渐近展开式

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chao Chen, H. Srivastava
{"title":"与χ2分布的概率密度函数相关的完全渐近展开式","authors":"Chao Chen, H. Srivastava","doi":"10.2298/aadm210720015c","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the function fp(t) = ? 2p?2(?2pt + p;p), where ?2(x;n) defined by ?2(x;p) = 2?p/2/?(p/2) e?x/2xp/2?1, is the density function of a ?2-distribution with n degrees of freedom. The asymptotic expansion of fp(t) for p ? ?, where p is not necessarily an integer, is obtained by an application of the standard asymptotics of ln ?(x). Two different methods of obtaining the coefficients in the asymptotic expansion are presented, which involve the use of the Bell polynomials.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete asymptotic expansions related to the probability density function of the χ2-distribution\",\"authors\":\"Chao Chen, H. Srivastava\",\"doi\":\"10.2298/aadm210720015c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the function fp(t) = ? 2p?2(?2pt + p;p), where ?2(x;n) defined by ?2(x;p) = 2?p/2/?(p/2) e?x/2xp/2?1, is the density function of a ?2-distribution with n degrees of freedom. The asymptotic expansion of fp(t) for p ? ?, where p is not necessarily an integer, is obtained by an application of the standard asymptotics of ln ?(x). Two different methods of obtaining the coefficients in the asymptotic expansion are presented, which involve the use of the Bell polynomials.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/aadm210720015c\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm210720015c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑函数fp(t) = ?2 p 2 (?2 pt + p, p)在哪里? 2 (x; n)定义的? 2 (x, p) = 2 ? p / 2 / ? ? (p / 2) e x / 2 xp / 2 ?1,是n个自由度的?2分布的密度函数。p(t)的渐近展开式其中p不一定是整数,它是通过应用ln ?(x)的标准渐近得到的。给出了两种不同的求渐近展开系数的方法,这两种方法都涉及到贝尔多项式的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete asymptotic expansions related to the probability density function of the χ2-distribution
In this paper, we consider the function fp(t) = ? 2p?2(?2pt + p;p), where ?2(x;n) defined by ?2(x;p) = 2?p/2/?(p/2) e?x/2xp/2?1, is the density function of a ?2-distribution with n degrees of freedom. The asymptotic expansion of fp(t) for p ? ?, where p is not necessarily an integer, is obtained by an application of the standard asymptotics of ln ?(x). Two different methods of obtaining the coefficients in the asymptotic expansion are presented, which involve the use of the Bell polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信