{"title":"用匹配数表示图的能量上界","authors":"S. Akbari, Abdullah J. Alazemi, Milica Andjelic","doi":"10.2298/aadm201227016a","DOIUrl":null,"url":null,"abstract":"The energy of a graph G, ?(G), is the sum of absolute values of the eigenvalues of its adjacency matrix. The matching number ?(G) is the number of edges in a maximum matching. In this paper, for a connected graph G of order n with largest vertex degree ? ? 6 we present two new upper bounds for the energy of a graph: ?(G) ? (n-1)?? and ?(G) ? 2?(G)??. The latter one improves recently obtained bound ?(G) ? {2?(G)?2?e + 1, if ?e is even; ?(G)(? a + 2?a + ?a-2?a), otherwise, where ?e stands for the largest edge degree and a = 2(?e + 1). We also present a short proof of this result and several open problems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Upper bounds on the energy of graphs in terms of matching number\",\"authors\":\"S. Akbari, Abdullah J. Alazemi, Milica Andjelic\",\"doi\":\"10.2298/aadm201227016a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy of a graph G, ?(G), is the sum of absolute values of the eigenvalues of its adjacency matrix. The matching number ?(G) is the number of edges in a maximum matching. In this paper, for a connected graph G of order n with largest vertex degree ? ? 6 we present two new upper bounds for the energy of a graph: ?(G) ? (n-1)?? and ?(G) ? 2?(G)??. The latter one improves recently obtained bound ?(G) ? {2?(G)?2?e + 1, if ?e is even; ?(G)(? a + 2?a + ?a-2?a), otherwise, where ?e stands for the largest edge degree and a = 2(?e + 1). We also present a short proof of this result and several open problems.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/aadm201227016a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm201227016a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Upper bounds on the energy of graphs in terms of matching number
The energy of a graph G, ?(G), is the sum of absolute values of the eigenvalues of its adjacency matrix. The matching number ?(G) is the number of edges in a maximum matching. In this paper, for a connected graph G of order n with largest vertex degree ? ? 6 we present two new upper bounds for the energy of a graph: ?(G) ? (n-1)?? and ?(G) ? 2?(G)??. The latter one improves recently obtained bound ?(G) ? {2?(G)?2?e + 1, if ?e is even; ?(G)(? a + 2?a + ?a-2?a), otherwise, where ?e stands for the largest edge degree and a = 2(?e + 1). We also present a short proof of this result and several open problems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.