用匹配数表示图的能量上界

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
S. Akbari, Abdullah J. Alazemi, Milica Andjelic
{"title":"用匹配数表示图的能量上界","authors":"S. Akbari, Abdullah J. Alazemi, Milica Andjelic","doi":"10.2298/aadm201227016a","DOIUrl":null,"url":null,"abstract":"The energy of a graph G, ?(G), is the sum of absolute values of the eigenvalues of its adjacency matrix. The matching number ?(G) is the number of edges in a maximum matching. In this paper, for a connected graph G of order n with largest vertex degree ? ? 6 we present two new upper bounds for the energy of a graph: ?(G) ? (n-1)?? and ?(G) ? 2?(G)??. The latter one improves recently obtained bound ?(G) ? {2?(G)?2?e + 1, if ?e is even; ?(G)(? a + 2?a + ?a-2?a), otherwise, where ?e stands for the largest edge degree and a = 2(?e + 1). We also present a short proof of this result and several open problems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Upper bounds on the energy of graphs in terms of matching number\",\"authors\":\"S. Akbari, Abdullah J. Alazemi, Milica Andjelic\",\"doi\":\"10.2298/aadm201227016a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy of a graph G, ?(G), is the sum of absolute values of the eigenvalues of its adjacency matrix. The matching number ?(G) is the number of edges in a maximum matching. In this paper, for a connected graph G of order n with largest vertex degree ? ? 6 we present two new upper bounds for the energy of a graph: ?(G) ? (n-1)?? and ?(G) ? 2?(G)??. The latter one improves recently obtained bound ?(G) ? {2?(G)?2?e + 1, if ?e is even; ?(G)(? a + 2?a + ?a-2?a), otherwise, where ?e stands for the largest edge degree and a = 2(?e + 1). We also present a short proof of this result and several open problems.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/aadm201227016a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm201227016a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

图G的能量?(G)是它的邻接矩阵的特征值的绝对值之和。匹配数?(G)是最大匹配中的边数。对于顶点度最大的连通图G (n阶)? 我们提出了图能量的两个新的上界:?(G) ?(n - 1) ? ?(G) ?2 (G) ? ?。后者改进了最近得到的界?(G) ?{2 (G) ? 2 ?E + 1,如果E是偶数;(G) ?A + 2?A + A -2 A),否则,其中?e表示最大边度,A = 2(?我们也给出了这个结果的一个简短证明和几个开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper bounds on the energy of graphs in terms of matching number
The energy of a graph G, ?(G), is the sum of absolute values of the eigenvalues of its adjacency matrix. The matching number ?(G) is the number of edges in a maximum matching. In this paper, for a connected graph G of order n with largest vertex degree ? ? 6 we present two new upper bounds for the energy of a graph: ?(G) ? (n-1)?? and ?(G) ? 2?(G)??. The latter one improves recently obtained bound ?(G) ? {2?(G)?2?e + 1, if ?e is even; ?(G)(? a + 2?a + ?a-2?a), otherwise, where ?e stands for the largest edge degree and a = 2(?e + 1). We also present a short proof of this result and several open problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信