{"title":"涉及多函数的除差的完全单调性","authors":"Zhen-Hang Yang, Jingfeng Tian","doi":"10.2298/aadm210630007y","DOIUrl":null,"url":null,"abstract":"For r, s ? R and ? = min {r, s}, let D[x + r, x + s; ?n?1] ? ??n (x) be the divided difference of the functions ?n?1 = (?1)n ?(n?1) (n ? N) on (??,?), where ?(n) stands for the polygamma functions. In this paper, we present the necessary and sufficient conditions for the functions x ? ?k i=1 ?mi (x) ? ?k ?k i=1 ?ni (x) , x ? ?k i=1 ?ni (x) ? ?k?snk (x) to be completely monotonic on (??,?), where mi, ni ? N for i = 1,..., k with k ? 2 and snk = ?k i=1 ni. These generalize known results and gives an answer to a problem.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Complete monotonicity involving the divided difference of polygamma functions\",\"authors\":\"Zhen-Hang Yang, Jingfeng Tian\",\"doi\":\"10.2298/aadm210630007y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For r, s ? R and ? = min {r, s}, let D[x + r, x + s; ?n?1] ? ??n (x) be the divided difference of the functions ?n?1 = (?1)n ?(n?1) (n ? N) on (??,?), where ?(n) stands for the polygamma functions. In this paper, we present the necessary and sufficient conditions for the functions x ? ?k i=1 ?mi (x) ? ?k ?k i=1 ?ni (x) , x ? ?k i=1 ?ni (x) ? ?k?snk (x) to be completely monotonic on (??,?), where mi, ni ? N for i = 1,..., k with k ? 2 and snk = ?k i=1 ni. These generalize known results and gives an answer to a problem.\",\"PeriodicalId\":51232,\"journal\":{\"name\":\"Applicable Analysis and Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Analysis and Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/aadm210630007y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm210630007y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
对于r s ?R和?= min {r, s},让D[x + r, x + s;n ?1) ???N (x)是两个函数的除差? N ?1 = (?1)n ?(n?1) (n?N) on(??,?),其中?(N)表示多元函数。本文给出了函数x ?k i=1 ?mi (x) ?k k i=1 ni (x) x ?k i=1 ni (x) ?k ?SNK (x)在(??,?)上是完全单调的,其中mi, ni ?N对于i = 1,…k和k ?2和SNK = ?k i=1 ni。这些方法概括了已知的结果,并给出了问题的答案。
Complete monotonicity involving the divided difference of polygamma functions
For r, s ? R and ? = min {r, s}, let D[x + r, x + s; ?n?1] ? ??n (x) be the divided difference of the functions ?n?1 = (?1)n ?(n?1) (n ? N) on (??,?), where ?(n) stands for the polygamma functions. In this paper, we present the necessary and sufficient conditions for the functions x ? ?k i=1 ?mi (x) ? ?k ?k i=1 ?ni (x) , x ? ?k i=1 ?ni (x) ? ?k?snk (x) to be completely monotonic on (??,?), where mi, ni ? N for i = 1,..., k with k ? 2 and snk = ?k i=1 ni. These generalize known results and gives an answer to a problem.
期刊介绍:
Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).