利用加权Hermite-Hadamard不等式估计一些正交规则

IF 1 4区 数学 Q1 MATHEMATICS
J. Baric, Ljiljanka Kvesić, J. Pečarić, Mihaela Ribicic-Penava
{"title":"利用加权Hermite-Hadamard不等式估计一些正交规则","authors":"J. Baric, Ljiljanka Kvesić, J. Pečarić, Mihaela Ribicic-Penava","doi":"10.2298/aadm201127013b","DOIUrl":null,"url":null,"abstract":"In this article new estimates on some quadrature rules are given using weighted Hermite-Hadamard inequality for higher order convex functions and weighted version of the integral identity expressed by w-harmonic sequences of functions. Obtained results are applied to weighted one-point formula for numerical integration in order to derive new estimates of the definite integral values.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimates on some quadrature rules via weighted Hermite-Hadamard inequality\",\"authors\":\"J. Baric, Ljiljanka Kvesić, J. Pečarić, Mihaela Ribicic-Penava\",\"doi\":\"10.2298/aadm201127013b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article new estimates on some quadrature rules are given using weighted Hermite-Hadamard inequality for higher order convex functions and weighted version of the integral identity expressed by w-harmonic sequences of functions. Obtained results are applied to weighted one-point formula for numerical integration in order to derive new estimates of the definite integral values.\",\"PeriodicalId\":51232,\"journal\":{\"name\":\"Applicable Analysis and Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Analysis and Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/aadm201127013b\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm201127013b","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用高阶凸函数的加权Hermite-Hadamard不等式和w调和函数序列表示的积分恒等式的加权形式,给出了一些求积规则的新估计。将所得结果应用于数值积分的加权一点公式,以得到定积分值的新估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimates on some quadrature rules via weighted Hermite-Hadamard inequality
In this article new estimates on some quadrature rules are given using weighted Hermite-Hadamard inequality for higher order convex functions and weighted version of the integral identity expressed by w-harmonic sequences of functions. Obtained results are applied to weighted one-point formula for numerical integration in order to derive new estimates of the definite integral values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicable Analysis and Discrete Mathematics
Applicable Analysis and Discrete Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信